Web of Science (Emerging Sources Citation Index)

Document Type : Original Research Article


1 Department of Electrical and Electronic Engineering, European University of Bangladesh, Gabtoli, Dhaka-1216, Bangladesh

2 Department of Chemistry, European University of Bangladesh, Dhaka-1216, Bangladesh

3 Chemistry Department, Faculty of Science, Assiut University, P.O. Box: 71515, Assiut, Egypt and Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia



Electronic band structures, the total density of state, the partial density of state, and optical properties were investigated using first principle method for SrPbO3 though Generalized Gradient Approximation (GGA) based on the Perdew–Burke–Ernzerhof (PBE0). The band gap was recorded at 0.768 eV. The electron doping happens between similar electronic localized states of atoms in crystals where the section of the quality edge and electron quality of that is  with thermally activated. The density of state and partial density of state  were simulated for evaluating the nature of  5s, 4d for Sr, 6s, 4f, 5d, 6p for Pb and 2s, 2p for O atom for SrPbO3 orbital travelling with the maximum valance band (MVB) to the minimum conduction band (MCB) to explain the  transition of electrons due to hybridization. The optical properties, for instance, absorption, reflection, refractive index, conductivity, dielectric function, and loss function, were calculated, which can account for the superior absorption of the visible light. The key point of this research is to determine the activity on electronics structure and optical properties for Fe doped by 6%. From the band gap and optical properties, SrPb0.94Fe0.06O3 can give more conductivity than that of SrPbO3, showing as a superconductor.

Graphical Abstract

Electronics structure and optical properties of SrPbO3 and SrPb0.94Fe0.06O3: A first principle approach


Main Subjects

[1] E.F. Schubert, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films., 1990, 8, 2980-2996.

[2] M. Bosi, C. Pelosi, Progress in Photovoltaics: Research and Applications, 2007, 15, 51-68.

[3] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature, 2004, 432, 488-492.

[4] R.K. Willardson, Journal of Applied Physics., 1959, 30, 1158-1165.

[5] M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, Le Si Dang, S. Kundermann, A. Mura, G. Bongiovanni, J.L. Staehli, B. Deveaud, Nature, 2001, 414, 731 -735.

[6] G. Dennis, Hall, MRS Online Proceedings Library Archive, 1993, 298, 367-378.

[7] M. Centini, C. Sibilia, M. Scalora, G.D. Aguanno, M. Bertolotti, M.J. Bloemer, C.M. Bowden, I. Nefedov, Physical Review E., 1999, 60, 4891-4898.

[8] G. Antonini, A. Orlandi, A.E. Ruehli, IEEE transactions on electromagnetic compatibility, 2002, 44, 399-403.

[9] P. Bettini, F. Trevisan, A. Formisano, IEEE transactions on magnetics, 2002, 38, 1089-1092

[10] F.G. Kellert, R.L. Moon, Journal of electronic materials, 1986, 15, 13-19.

[11] D. Wood, J. Tauc, Physical Review B., 1972, 5, 3144- 3151.

[12] J. Simon, V. Protasenko, C. Lian, H. Xing, D. Jena, Science, 2010, 327, 60-64.

[13] Wu Chi, Emerging Components and Technologies for All-Optical Photonic Systems II., 1997, 2918, 14-25.

[14] S.M. Ku, Journal of the Electrochemical Society, 1966, 113, 813 -816.

[15] S. Adachi, C.W. Tu, Physics Today, 1994, 47, 99-100.

[16] A.H. Reshak, The Journal of Chemical Physics, 2006, 125, 034710.

[17] S.I. Tsintzos, N.T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, P.G. Savvidis, Nature,2008, 453, 372- 375.

[18] J. Chilla, S. Butterworth,A. Zeitschel, J. Charles, A. Caprara, M.K. Reed, L.A. Spinelli, Solid State Lasers XIII: Technology and Devices., 2004, 5332, 143-150.

[19] A.M. Morales, C.M. Lieber, Science, 1998, 279, 208-211.

[20] B. Hadjarab, A. Bouguelia, M. Kadi-Hanifi, M. Trari, Journal of Physics: Condensed Matter., 2006, 18, 8551 -8561.

[21] K.C. Mishra, K.H. Johnson, P.C. Schmidt, Physical Review B., 1995, 51, 13972- 13976.

[22] D.D. Kleppinger, F.A. Lindholm,Solid-State Electronics., 1971, 14, 407-416.

[23] H.R. Mardani, M. Forouzani, M. Ziari, P. Biparva, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 141, 27-33.

[24] M. Forouzani, H.R. Mardani, M. Ziari, A. Malekzadeh, P. Biparva, Chemical Engineering Journal., 2015, 275, 220-226.

[25] U.K Chowdhury, M.A. Rahman, M.A. Rahman, M.T.H. Bhuiyan, M.L. Ali, Cogent Physics., 2016, 3, 1231361.

[26] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, Journal of Physics: Condensed Matter., 2002, 14, 2717-2744.

[27] P.J. Perdew, K. Burke, M. Ernzerhof, Physical Review Letters, 1996, 77, 3865-3868.