Web of Science (Emerging Sources Citation Index)

Document Type: Original Research Article

Authors

1 School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, P.R. China

2 Department of Mathematics and Statistics, Institute of Southern Punjab, Multan, Pakistan

3 Department of Mathematical Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates

4 Department of Mathematics, COMSATS Institute of Information Technology, Attock, Pakistan

5 Department of Basic Sciences, Riphah International University, Islamabad, Pakistan

6 Department of Applied Mathematics, Iran University of Science and Technology (IUST),Narmak,Tehran 16844, Iran

10.33945/SAMI/ECC.2020.6.4

Abstract

The molecular topological descriptors are the numerical in-variants of a molecular graph and are very useful and efficient to predict their bioactivity. Dendrimers are highly branched organic macro-molecules with successive layers or generations of branch units surrounding a central core and have many applications in biology, medicine and drug designs. These are key molecules in nanotechnology and can be put to good use. A great variety of such indices are studied and used in theoretical chemistry and pharmaceutical researchers. Among them, a large number of indices depend only on vertex degrees of the molecular graph. A considerable amount of these vertex-degree-based topological indices can be represented as the sum of edge contributions of graph. These kind of vertex-degree-based topological indices are known as bond incident degree (BID) indices. In this paper, we determine the bond incident degree indices of complex structures in drugs called nanostar dendrimers and compute the closed formula for these indices.

Graphical Abstract

Keywords

Main Subjects

[1] A.R. Ashrafi, M. Mirzargar, Indian J. Chem., 2008, 47, 538-541.

[2] A.R. Ashrafi, F. Rezaei, MATCH Commun. Math. Comput. Chem., 2007, 57, 243-250.

[3] A.R. Ashrafi, A. Loghman, MATCH Commun. Math. Comput. Chem., 2006, 55, 447-452.

[4] B. Hollas, MATCH Commun. Math. Comput. Chem., 2005, 54, 177-187.

[5] D. Vukičević, M. Gašperov, Croat. Chem. Acta., 2010,83, 243-260.

[6] G. Cao, Y. Wang, Nanostructures & Nanomaterials, Synthesis, Properties, Applications. World Scientific Series in Nanoscience and Nanotechnology, 2nd Edition, 2, 2011.

[7] I. Gutman, Croat. Chem. Acta., 2013,86, 351-361.

[8] J. Rada, R. Cruz, I. Gutman, Chemical Physics Letters, 2013,572, 154-157.

[9] L. Yang, H. Hua, Optoelectron. Adv. Mat., 2012,6, 660-663.

 [10] M. Baca, J. Horvathova, M. Mokrisova, A. Semanicova-Fenovckova, A. Suhanyiova, Can. J. Chem., 2015,93, 1157-1160.

 [11] M. Ghorbani, H. Mesgarani, S. Shakeraneh, Optoelectron. Adv. Mat., 2011,5, 324 –326.

[12] M.V. Diudea, A.E. Vizitiu, M. Mirzagar, A.R. Ashrafi, Carpathian J. Math., 2010, 26, 59-66.

[13] M.V. Diudea, G. Katona, Advan. Dendritic Macromol., 1999,4, 135-201.

 

[14] M.V. Diudea, M. Stefu, B. Parv, P.E. John, Croat. Chem. Acta., 2004,77, 111-115.

[15] P.E. John, M. V. Diudea, Croat. Chem. Acta., 2004, 77, 127-132.

[16] W. Gao, M.R. Farahani, L. Shi, Acta Medica Mediterr, 2016,32, 579-585.

[17] W. Gao, W.F. Wang, Comput. Math. Method. M., 2015, Article ID 418106, 10 pages, doi:10.1155/2015/418106

[18] W. Gao, W.F. Wang, M.R. Farahani, J. Chem-NY, 2016, Article ID 3216327, 8 pages, https://doi.org/10.1155/2016/3216327.