Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

2 Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran

10.33945/SAMI/ECC.2020.7.1

Abstract

Preliminary researches provided essential information about the optimized configuration of triatomic XO2 (X = O, S, Se, Te) systems, which were bent in the ground state and linear in their first excited state. The Jahn-Teller effects including the Jahn-Teller (JTE), the Renner-Teller effect (RTE), and the pseudo Jahn–Teller effect (PJTE) are parts of the most important reasons for structural distortion in the high symmetry configurations for each molecular system. This study purpose was to investigate the dependence between PJT parameters including the vibronic coupling constant values ​​(F), energy gap between reference states (Δ), and initial force constant (K0). In all above mentioned molecules, stability were increased with the reduction in the symmetry level. This increment was attributed to the PJTE. The vibronic coupling interaction between the ground (Σg), and the first excited states (Πu) through the PJTE problem (PJT (Σg+ Πu) × Πu) was because of the asymmetry and molecules bending phenomenon. The hardness difference parameter Δ[η (C2V) -η (D∞h)] decreases from O to Te (30.42, 22.66, 22.65, 22.58 Kcal/mol). These changes could explain the trend, which were observed for the D∞h  → C2V conversion process.

Graphical Abstract

Quantum chemical study of the Jahn – Teller effect on the distortions of XO2 (X = O, S, Se, Te) systems

Keywords

Main Subjects

[1] I.B. Bersuker, The Jahn–Teller Effect, Cambridge University Press, Cambridge, UK, 2006.
[2] K.J. Donald, W.H. Mulder, L.V. Szentpaly, J. Chem. Phys., 2003, 119,5423–5436.
[3] L. Margules, E. Herbst, V. Ahrens, F. Lewen, G. Winnewisser, H.S.P. Muller, J. Mol. Spectrosc., 2002, 211,211–220.
[4] V. Ossenkopf, H.S.P.M  ̈uller, D.C. Lis, P. Schilke, T. A. Bell, S. Bruderer, E. Bergin, C. Cec-carelli,  C. Comito, J. Stutzki, A. Bacman, A. Baudry, A.O. Benz, M. Benedettini,  O. Berne, G. Blake, A. Boogert, S. Bottinelli, F. Boulanger, S. Cabrit, P. Caselli, E. Caux, J. Cernicharo, C. Codella, A. Coutens, N. Crimier, N.R. Crockett, F. Daniel, K. Demyk, P. Dieleman, C. Do-minik,  M.L. Dubernet,  M. Emprechtinger,  P. Encrenaz,  E. Falgarone,  K. France,  A. Fuente, M. Gerin, T.F. Giesen, A.M. di Giorgio, J.R. Goicoechea, P.F. Goldsmith, R.G  ̈usten, A. Har-ris, F. Helmich, E. Herbst, P. Hily-Blant, K. Jacobs, T. Jacq, C. Joblin, D. Johnstone, C. Kahane, M. Kama, T. Klein, A. Klotz, C. Kramer, W. Langer, B. Lefloch, C. Leinz, A. Lorenzani, S. D. Lord, S. Maret, P.G. Martin, J. Martin-Pintado, C. McCoey, M. Melchior, G.J. Melnick, K.M. Menten, B. Mookerjea, P. Morris, J.A. Murphy, D.A. Neufeld, B. Nisini, S. Pacheco, L. Pa-gani, B. Parise, J.C. Pearson, M. P ́erault, T.G. Phillips, R. Plume, S. Quin, R. Rizzo, M. R  ̈ollig, M. Salez, P. Saraceno, S. Schlemmer, R. Simon, K. Schuster, F.F.S. van der Tak, A.G.G. M. Tielens, D. Teyssier, N. Trappe, C. Vastel, S. Viti, V. Wakelam, A. Walters, S. Wang, N. Why-born, M. van der Wiel, H.W. Yorke, S. Yu, J. Zmuidzinas, Astron. Astrophys., 2010, 518, L111/111–L111/115.
[5] D.E. Woon, E. Herbst, Astrophys. J. Suppl. Ser., 2009,185, 273–288.
[6] W.C. Gardiner, Gas-Phase Combustion Chemistry, Second ed., Springer-Verlag, New York, 2000.
[7] D. Rehder, Wiley-WCH, Weinheim, 2010.
[8] I.B. Bersuker, Chem. Rev., 2013, 113, 1351-1390.
[9] I.B. Bersuker, Phys. Rev. Lett., 2012, 108, 137202.
[10] H. Kӧppl, D.R. Yarkoni, L. Barentzen, (Eds.), The Jahn-Teller Effect: Fundamentals and Implications for Physics and Chemistry, Springer-Verlag Berlin Heidelberg, 2009.
[11] H. Kayi, P. Garcia Fernandez, I.B. Bersuker, J.E. Boggs, J. Phys. Chem. A., 2013, 117, 8671-8679.
[12] H. Kayi, I.B. Bersuker, J.E. Boggs, J. Mol. Struct., 2012, 1023, 108-114.
[13] Y. Liu, I.B. Bersuker, W. Zou, J.E. Boggs, J. Chem. Theory Comput., 2009, 5, 2679-2686.
[14] W. Zou, M. Filatov, D. Cremer, Int. J. Quant. Chem., 2012, 112, 3277-3288.
[15] P. Garcia Fernandez, Y. Liu, I.B. Bersuker, J.E. Boggs, Phys. Chem. Chem. Phys. , 2011, 13, 3502-3513.
[16] P.G. Fernandez, I.B. Bersuker, J.E. Boggs, J. Phys. Chem. A., 2007, 111, 10409- 10415.
[17] Y. Liu, I.B. Bersuker, W. Zou, J.E. Boggs, J. Chem. Phys., 2010, 376, 30-35.
[18] Y.Liu, J. Comput. Theory Chem., 2014, 1044, 94-100.
[19] K. Hajhoseinzadeh, R. Ghiasi, A. Marjani, Eurasian Chem. Commun., 2020, 2, 78-86.
[20] E. Faramarzi, R. Ghiasi, M. Abdoli- Senejani, Eurasian Chem. Commun., 2020, 2, 187-195.
[21] M. Vafaei-Nezhad, R. Ghiasi, F. Shafiei, Chem. Methodol.. 2020, 4, 161-171.
[22] S. Ghorbaninezhad, R. Ghiasi, Chem. Methodol., 2020, 4, 80-91.
[23] G.G. Shalmani, R. Ghiasi, A. Marjani, Chem. Methodol., 2019, 3, 752-767.
[24] R. Ghiasi, A.H. Hakimioun, Iran. Chem. Commun., 2017, 5, 67-78.
[25] R. Ghiasi, M. Monajjemi, E.E. Mokarram, P. Makkipour, J. Structural Chemistry, 2008, 49, 600-605.
[26] R. Ghiasi, H. Pasdar, Russ. J. Phys. Chem. A, 2013, 87, 973-978.
[27] R. Ghiasi, H. Pasdar, F. Irajizadeh, J. the Chilean Chemical Society, 2015, 60, 2740-2746.
[28] R. Ghiasi, F. Zafarniya, S. Ketabi, Russ. J. Inorg. Chem., 2017, 62, 1371-1378.
[29] R. Ghiasi, A. Heidarbeigi, Russ. J. Inorg. Chem., 2016, 61, 985-992.
[30] M. Rezazadeh, R. Ghiasi, S. Jamehbozorgi, J. Structural Chemistry, 2018, 59, 245-251.
[31] G. Mahmoudzadeh, R. Ghiasi, H. Pasdar, J. Structural Chemistry, 2019, 60, 736-745.
[32] G. Mahmoudzadeh, R. Ghiasi, H. Pasdar, Russ. J. Phys. Chem. A, 2019, 93, 2244–2249.
[33] N. Najjari Milani, R. Ghiasi, A. Forghaniha, J. Sulfur Chemistry, 2018, 39, 665-673.
[34] M. Nilchi, R. Ghiasi, E. Mohammadi Nasab, Mol. Phys., 2019, 117, 567-574.
[35] M. Nilchi, R. Ghiasi, E.M. Nasab, J. the Chilean Chemical Society, 2019, 64, 4360-4364.
[36] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
[37] A.D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
[38] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M .Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.r. Peralta, J.E. Ogliaro, F. Bearpark, M. Heyd, J.J. Brothers, E. Kudin, K.N. Staroverov, V.N. Kobayashi, R.J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian09, Revision A.02; Gaussian, Inc.:Wallingford CT, 2009.
[39] O.A. Vydrov, G.E. Scuseria, J. Chem. Phys., 2006, 125, 234109.
[40] A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev., 1998, 88, 899-926.
[41] G. Kouchzkzadeh, D. NoriShargh, phys. Chem. Chem. Phys., 2015, 17, 29251-29261.
[42] M. Karni, Y. Apeloig, J. Am. Chem. Soc., 1990, 112, 8589-8590.
[43] K.C. Mondal, B. Dittrich, B. Maity, D. Koley, H.W. Roesky, J. Am. Chem. Soc., 2014, 136, 9568-9571.
[44] I.B. Bersuker, Chem. Rev., 2001, 101, 1067-1114.
[45] R.G. Parr, R.G. Pearson, J. Am. Chem. Soc., 1983, 105, 7512-7516.
[46] R.G. Pearson, J. Chem. Educ., 1999, 76, 267-275.
[47] M. Torrent Sucarrat, M. Duran, M. Sola, J. Phys. Chem. A., 2002, 106, 4632-4638.
[48] J. Onoda, M. Ondacek, P. Jelinek, Y. Sugimoto, Nat. Commun., 2017, 8, 15155(1)-15155(6).