Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Central Research Laboratory, The Federal University of Technology, Akure-Nigeria

2 Department of Science Technology, The Federal Polytechnic, Ado-Ekiti, Ekiti State, Nigeria

Abstract

Raphia taedigera seed is an underutilized seed with several bioactive compounds that have the tendency to regulate metabolic processes to promote the healthy living. In this research study, sixteen bioactive compounds were identified in the Raphia taedigera seed oil using Gas chromatography-mass spectrometry (GC-MS). GC-MS revealed the presence of Hexadecanoic acid, methyl ester (0.31%), n-Hexadecanoic acid (7.15%), trans-13-Octadecenoic acid methyl esters (0.91%), Oleic acid (10.83), Octadecanoic acid (10.23%), cis-13-Octadecenoic acid (2.75%), 6-Octadecenoic (3.26%), Cis-vaccenic acid (1.94%), Palmitoyl chloride (2.82%), Trans-13-Octadecenoic acid (1.78), 9, 12-Octadecadienoic acid (1.54%), 4, 4, 6a, 6b, 8a, 11, 11, 14b-Octamethyl-1, 4, 4a, 5, 6, 6a, 6b, 7, 8, 8a, 9, 10, 11, 12, 12a, 14, 14a, 14b-octadecahydro-2H-picen-3-one (7.29%), 3-Methoxymethoxy-2, 3-dimethylundec-1-ene (8.88%), Cyclohexanecarboxylic acid (2.00%), undecylester, Beta.-Amyrin (8.31%) and Lup-20(29)-en-3-one (27.28%). The results show revealed the potential of the seed oil as an anti-inflammatory, anti-leishmanial, anti-cancer, antioxidant, antifungal and hypocholesterolemic.

Graphical Abstract

Analysis of bioactive compounds from Raphia taedigera using gas chromatography–mass spectrometry

Keywords

[1] B. Mahesh, S. Satish, World J. Agric. Sci., 2008, 4S, 839-843.
[2] L.A. Shelef, J. Food Safety, 1984, 6, 29–44.
[3] H.E. Moore, Palms in the tropical forest ecosystems of Africa and South America.
In: Meggers, B.J., Ayensu, E., Duckworth,W.D (Eds). Tropical forest eco-systems in Africa and South America: A comparative review. Smithsonian, Washington, D.C. 1973.
[4] S.M. Abegunde, Asian J. Chem. Sci., 2018, 5, 1-8.
[5] A. Henderson. Palms of the Amazon, Oxford University Press; England, 1995.
[6] D.C. Arthur, Numbers of living specie in Australia and the world, 2rd. Ed. Canberra, 2009.
[7] S.M. Abegunde, Asian J. Chem. Sci., 2018, 5, 1-8.
[8] O.O. Oluwaniyi, E.O. Odebunmi, C.O. Owolabi, Sci. focus, 2014,19, 28-33.
[9] E. Altiok, Recovery of Phytochemicals (having antimicrobial and antioxidant characteristics) from local plants. Ph.D thesis, Izmir Institute of Technology. Turkey, 2010.             
[10] R.H. Liu, J. Nutr.2004, 134, 3479S-3485S
[11] S.M. Abegunde, Asian J. Chem. Sci., 2018, 5, 1-8.
[12] N.N. Azwanida, J. Med. Aromat. Plants, 2015, 4,3-6.
[13] G. Oboh, O.B. Ogunsuyi, O.I. Awonyemi, V.A. Atoki, J. Oxi. Med. & Cel. Long., 2018, 1-10.
[14] P. Vuorelaa, M. Leinonenb, P. Saikkuc, P. Tammelaa, J.P. Rauhad, T. Wennberge, H. Vuorelaa, Curr. Med. Chem., 2004, 11, 1375-1389.
[15] N.K. Sharma, D. Ahirwar, D. Jhade, S. Gupta, Ethnobotanical. Review, 2009, 13, 946-955.
[16] S. Boryczka, E. Michalik, J. Kusz, M. Nowak, E. Chrobak, Acta Crystallogr. Sect. E Struct. Rep., 2013, 69, 795-796.
[17] K. Hata, Toxicol. Lett., 2003, 143, 1-7.
[18] P. Wal, A. Wal, G. Sharma, A.K. Rai, Sys. Rev. Pharm., 2011, 2, 96-103.
[19] I. Anwarul, S. Abu, M. Shah, B. Alam, M. Ashik, G. Mosaddik, Pak. J. Biol. Sc., 2001, 4, 711-713.
[20] A.F. Gabriel, S.K. Okwute, J. Chem. Soc., 2009, 34, 156-161.
[21] R.U. Okoh-Esene, J.I. Okogun, S.K. Okwute, S.A. Thomas, Arch. Appl. Sci. Res., 2012,4,315-322.
[22] F.G. Cassiano, A. R. Silva, P. Burth, M.V. Castro-Faria, H.C. Castro-Faria, Handbk. Lipd.  Hum. Func., 2016,11, 605-634.
[23] B. Binukumar, A. Mathew, World J. Surg. Oncol., 2005, 3, 45-50.
[24] M. Rubio, M. Alvarez-Orti, A. Alvarruiz, E. Fernandez, J.E. Pardo, J. Agric. Food Chem. 2009, 57, 2712-2815.
[25] P. Jegadeeswari, A. Nishanthimi, S. Muthukumarasamy, R. Mohan, J. Curr. Chem. Pharm. Sc., 2012, 2, 226-232.
[26] Dr. Duke’s Phytochemical and Ethnobotanical Databases. Homepage, https://phytochem.nal.usda.gov/ accessed on 10012018.
[27] Dr. Duke’s Phytochemical and Ethnobotanical Databases. Homepage: https://phytochem.nal.usda.gov/ accessed on 10012018.
[28] H. Sales-Campos, P.R. Souza, B.C. Peghini, J.S. da Salva, C.R. Cardoso. Mini Rev., Med. Chem., 2013,13, 201-210.
[29] A. Sunita, K. Ganesh, M. Sonam, Int. Res. J. Pharm., 2017,8, 69-76.
 [30] M.H. Yu, H.G. Im, J.W. Lee, M.H. Bo, H.J. Kim, S.K. Kim, S.K. Chung, I.S. Lee, J. Nat. Prod., 2008, 22, 275-283.
[31] S. Pintus, E. Murru, G. Carta, L. Cordeddu, B. Batetta, S. Accossu, D. Pistis, S. Uda, M. Elena-Ghiani, M. Mele, P. Secchiari, G. Almerighi, P. Pintus, S. Banni, Br. J. Nutr., 2012,24, 1-10.
[32] J. N. Asegbeloyin, E.E. Onyeka, I. Babahan, O. Okpareke, J. Chem. Soc. Nig., 2018,43, 550-560.
[33] Dr. Duke’s Phytochemical and Ethnobotanical Databases. Homepage, https://phytochem.nal.usda.gov/ accessed on 10012018.
[34] G. Rajeswari, M. Murugan, V.R. Mohan, Res. J. Pharm. Biol. Chem. Sc., 2013,29, 818-824.
[35] D.D. Duann, C.Y. Bu, J. Cheng, Y.N. Wang, G. L. Shi, J. Econ. Entomol., 2011,104, 375-378.
[36] F.A. Santos, J.T. Frota, B.R. Arruda, T.S. deMalo, A.A. da Silva, G.A. Brito, M.H. Chaves, V.S.  Rao, Lipids Health. Dis., 2012, 11, 98-105.
[37] C.M. Melo, T.C. Morais, A.R. Tome, G.A. Brito, M.H. Chaves, V.S. Rao, F.A. Santos, Inflamm. Res., 2011,60, 673-681.
[38] P. Wal, A. Wal, G. Sharma, A.K. Rai, Sys. Rev. Pharma., 2011,2, 96-103.
[39] S. Sunitha, M. Nagaraj, P. Varalakshni, Fitoterapia, 2001,72, 516-523.