Document Type : Original Research Article
Authors
1 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran 2Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
2 Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
3 Department of Chemistry, University of Zabol, Zabol, Iran
Abstract
Using elemental analysis, Fourier transform infrared (FTIR) and UV-visible spectroscopies, as well as conductivity measurements, synthesis of 5 first-row transition metal complexes, including [M(L')(H2O)2] (M=Mn (C1), Fe (C2), Co (C3), Ni (C4), Cu (C5)) relevant to a benzoyl thiourea ligand, which was derived by condensing 2-chlorobenzoyl-isothiocyanate with 2,6-diaminopyridine, to produce 1,1'-(pyridine-2,6-diyl)bis(3-(2-chlorobenzoyl) thiourea) (L) was conducted. The structures proposed for the five complexes were confirmed through the application of conformational analysis and geometry optimization. These compounds were studied in vitro in terms of antibacterial properties against the standard gram-positive and gram-negative bacterial strains, and their superior antibacterial activities compared to those of the new thiourea derivative were proven through the experiments.
Graphical Abstract
Keywords
- Density functional theory (DFT)
- antibacterial activity
- benzoyl thiourea
- complex
- 2-chlorobenzoyl-isothiocyanate
Main Subjects
[1] A.A. Isab, S. Nawaz, M. Saleem, M. Altaf, M. Monim-ul-Mehboob, S. Ahmad, H.S. Evans, Polyhedron, 2010, 29, 1251-1256.
[2] N. Dolan, D.P. Gavin, A. Eshwika, K. Kavanagh, J. McGinley, J.C. Stephens, Bioorg. Med. Chem. Lett., 2016, 26, 630-635.
[3] P.R. Chetana, B.S. Srinatha, M.N. Somashekar, R.S. Policegoudra, J. Mol. Struct., 2016, 1106, 352-365.
[4] P. Cui, X. Li, M. Zhu, B. Wang, J. Liu ,H. Chen, Bioorg. Med. Chem. Lett., 2017, 27, 2234-2237.
[5] A. Bielenica, J. Stefańska, K. Stępień, A. Napiórkowska, E. Augustynowicz-Kopeć, G. Sanna, S. Madeddu, S. Boi, G. Giliberti, M. Wrzosek, Eur. J. Med. Chem., 2015, 101, 111-125.
[6] I. Ullah, A. Shah, A. Badshah, N.A. Shah, R. Tabor, Colloids Surf. A, 2015, 464, 104-109.
[7] N.A. Mohamed, N.A.A. El-Ghany, M.M. Fahmy, Int. J. Biol. Macromol., 2016, 82, 589-598.
[8] A.F. Elhusseiny, A. Eldissouky, A.M. Al-Hamza ,H.H.A.M. Hassan, J. Mol. Struct., 2015, 1100, 530-545.
[9] S.S. Hassan, M.M. Shoukry, R.N. Shallan, R. van Eldik, J. Coord. Chem., 2017, 70, 1761-1775.
[10] L. Qiao, J. Huang, W. Hu, Y. Zhang, J. Guo, W. Cao, K. Miao, B. Qin, J. Song, J. Mol. Struct., 2017, 1139, 149-159.
[11] F. Bílek, T. Křížová, M. Lehocký, Colloid. Surface. B., 2011, 88, 440-447.
[12] H.M. Faidallah, K.A. Khan, A.M. Asiri, J. Fluorine. Chem., 2011, 132, 870-877.
[13] S. Karakuş, S. Rollas, Farmaco 2002, 57, 577-581.
[14] S.B. Tsogoeva, M.J. Hateley, D.A. Yalalov, K. Meindl, C. Weckbecker, K. Huthmacher, Bioorg. Med. Chem., 2005, 13, 5680-5685.
[15] M. Mushtaque, F. Avecilla, M.S. Khan, Z.B. Hafeez, M.M.A. Rezvi, A. Srivastava, J. Mol. Struct., 2017, 1141, 119-132.
[16] I.-J. Kang, L.-W. Wang, C.-C. Lee, Y.-C. Lee, Y.-S. Chao, T.-A. Hsu, J.-H. Chern, Bioorg. Med. Chem. Lett., 2009, 19, 1950-1955.
[17] T. Yeşilkaynak, H. Muslu, C. Özpınar, F.M. Emen, R.E. Demirdöğen, N. Külcü, J. Mol. Struct., 2017, 1142, 185-193.
[18] W. Hernández, E. Spodine, L. Beyer, U. Schröder, R. Richter, J. Ferreira, M. Pavani, Bioinorg. Chem. Appl., 2005, 3, 299-316.
[19] E. Rodriguez-Fernandez, J.L. Manzano, J.J. Benito, R. Hermosa, E. Monte, J.J. Criado, J. Inorg. Biochem., 2005, 99, 1558-1572.
[20] M.K. Rauf, A. Badshah, M. Gielen, M. Ebihara, D. de Vos, S. Ahmed, J. Inorg. Biochem., 2009, 103, 1135-1144.
[21] H.-J. Zhang, X. Qin, K. Liu, D.-D. Zhu, X.-M. Wang, H.-L. Zhu, Bioorg. Med. Chem., 2011, 19, 5708-5715.
[22] I.C. Mendes, M.A. Soares, R.G. dos Santos, C. Pinheiro, H. Beraldo, Eur. J. Med. Chem., 2009, 44, 1870-1877.
[23] J. Farzanfar, K. Ghasemi, A.R. Rezvani, H.S. Delarami, A. Ebrahimi, H. Hosseinpoor, A. Eskandari, H.A. Rudbari, G. Bruno, J. Inorg. Biochem., 2015, 147, 54-64.
[24] H. Arslan, N. Duran, G. Borekci, C. Koray Ozer, C. Akbay, Molecules, 2009, 14, 519-527.
[25] G. Li, D.-J. Che, Z.-F. Li, Y. Zhu ,D.-P. Zou, New. J. Chem., 2002, 26, 1629-1633.
[26] C.K. Ozer, H. Arslan, D. Vanderveer, G. Binzet, J. Coord. Chem., 2009, 62, 266-276.
[27] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 1988, 37, 785.
[28] G. Micera, E. Garribba, Int. J. Quantum Chem., 2012, 112, 2486-2498.
[29] G. Micera, V.L. Pecoraro, E. Garribba, Inorg. Chem., 2009, 48, 5790-5796.
[30] S. Gorelsky, G. Micera, E. Garribba, Chem. Eur. J., 2010, 16, 8167-8180.
[31] I. Wiegand, K. Hilpert, R.E.W. Hancock, Nat. Protoc., 2008, 3, 163-175.
[32] U. El-Ayaan, J. Mol. Struct., 2011, 998, 11-19.
[33] L. Sacconi, Pure Appl. Chem., 1968, 17, 95-128.
[34] W.J. Geary, Coord. Chem. Rev., 1971, 7, 81-122.
[35] W. Yang, H. Liu, M. Li, F. Wang, W. Zhou, J. Fan, J. Inorg. Biochem., 2012, 116, 97-105.