Web of Science (Emerging Sources Citation Index)

Document Type: Original Research Article

Authors

Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Iran

Abstract

A novel chemically modified carbon paste electrode (CMCPE) impregnated with 4′-(4-chlorophenyl)-2,2′:6′,2′′-terpyridine ligand was prepared and applied for voltammetric determination of Cd2+ ion in petrochemical samples. The effects of pH, ligand amount and supporting electrolyte on the selective adsorption properties for the Cd2+ ion were explored. The sensor displayed substantially good resistance against interfering agents. In the presence of a large excess of Na+, K+, Ca2+, Mg2+ and Pb2+, the adsorption capacity for Cd2+ was slightly changed, suggesting the high selectivity of CMCPE for Cd2+ions. The parameters controlling the response of the electrode were investigated. The limit of detection (LOD) and  relative standard deviation (n = 5) were obtained by 3.77 ng/Land 0.45%, respectively. The preconcentration procedure revealed a linear curve within the concentration range of 4 – 3000 ng/L and a good linearity with squared correlation coefficient of (R2) 0.9988 was achieved. The CV was run starting from –1.5 V to 0.0 V and back (Scan rate: 100 mV/s). The best ratio of the Cd2+-Ligand in carbon paste was 8% (w/w) for a good detection of Cd2+ ions. Optimum pH for maximum adsorption was 4.0 ±0.2. All the instrumental parameters involved in the analytical procedure were optimized. The study was accomplished in Britton–Robinson (B-R) buffer solution of 2 ng/mL Cd2+ ions. The optimal values of scan rate, pulse amplitude, pulse time, voltage step, voltage step time, deposition potential and deposition time were obtained 100 mV/s, 0.20 V, 0.04 s, 0.005 V, 1.2 s, – 0.95 V and 150 s, respectively.

Graphical Abstract

Keywords

Main Subjects

[1] A.K. Prasada Rao, M. Mahfoud, J. Alloy Compd.,2010, 491, 8-10.

[2] E. Makarewicz, P. Cysewski, A. Michalik, D. Ziółkowska, Dyes Pigments, 2013, 96, 338-348.

[3] F.B. Mainier, L.P.C. Monteiro, L.H. Fernandes, M.A.M. Oliveira, ARPN J. Sci. Tech., 2013, 2, 176-180.

[4] H. Batzer, Ecotox. Environ. Safe, 1983, 7, 117-121.

[5] N.S. Randhawa, K. Gharami, M. Kumar, Hydrometallurgy, 2016, 165, 191-198.

[6] E. Alkuam, M. Mohammed, T.P. Chen, Sol. Energy, 2017, 150, 317-324.

[7] A.Z.P. Suarez, F.M. da Silva, J. Braz. Chem. Soc., 2012, 23, 1201-1208.

[8] F.M. da Silva, D.M.M. Pinho, G.P. Houg, I.B.A. Reis, M. Kawamura, M.S.R. Quemel, P.R. Montes, P.A.Z. Suarez, Chem. Eng. Res. Des., 2014, 92, 1463-1469.

[9] M.B. Alves, F.C.M. Medeiros, M.H. Sousa, J.C. Rubim, P.A.Z. Suarez, J. Braz. Chem. Soc., 2014, 25, 2304-2313. 

[10] V. Puklova, A. Batáriová, M. Černá, B. Kotlík, K. Kratzer, J. Melicherčík, J. Ruprich, I. Řehůřková, V. Spěváčková, Cent. Eur. J. Publ. Health, 2005, 13, 11-19.

[11] G.C. Lalor, Sci. Total Environ., 2008, 400, 162-172.

[12] S. Baytak, Acta Chim. Slov., 2007, 54, 385–391.

[13] M.G. Kakavandi, M. Behbahani, F. Omidi, G. Hesam, Food Anal. Methods, 2017, 10, 2454–2466.

[14] V.A. Lemos, R.S. da Franc, B.O. Moreira, Technol., 2007, 54, 349–354.

[15] E. Kenduzler, S. Baytak, O. Yalcinkaya, A.R. Turker, Anal. Sci. Spectrosc., 2007, 52, 91-100.

[16] S.S. Lee, I.I. Yoon, K.M. Park, J.H. Jung, L.F. Lindoy, A. Nezhadali, Gh. Rounaghi, Dalton. Trans.,2002, 10, 2180-2184.

[17] A. Nezhadali, S. Sadeghzadeh, Sens. Actuators B., 2016, 224, 134-142.

[18] T. Alizadeh, M.R. Ganjali, P. Nourozi, M. Zare, M.A. Hoseini, Electroanal. Chem., 2011, 657, 98-106.

[19] H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, F. Şen, Materials Chemistry and Physics, 2020, 250,123042.

[20] H. Karimi-Maleh,, F. Karimi, S. Malekmohammadi, N. Zakariae, R. Esmaeili, S. Rostamnia, M.L. Yola, N. Atar, S. Movaghgharnezhad, S. Rajendran, A. Razmjou, Y. Orooji, S. Agarwal, V.K. Gupta, Journal of Molecular Liquids, 2020, 310,113185.

[21] M. Miraki, H. Karimi Maleh, M.A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V.K. Gupta, Journal of Molecular Liquids, 2019, 278, 672-676.

[22] J. Guo, Y. Chai, R. Yuan, Z. Song, Z. Zou, Sens. Actuators B.,2011, 155, 639-645.

[23] A. Afkhami, H. Ghaedi, T. Madrakian, M. Rezaeivala, Electrochimica Acta., 2013, 89, 377– 386.

[24] J. Tashkhourian, S. Javadi, F. Nami, Microchim. Acta.,2011, 173, 79-84.

[25] T. Alizadeh, M. Akhoundian, Electrochim Acta.,2010, 55, 5867-5873.

[26] L. Saghatforoush, H.A. Rudbari, F. Nicolò, P. Asgari, F. Chalabian, M. Hasanzadeh, V. Panahiazar, Acta Chim. Slov.,2013, 60, 300–309.

[27] D.K. Singh, S. Mishra, Appl. Surf. Sci.,2010, 256, 7632-7637.

[28] C. Hu, K. Wu, X. Dai, S. Hu, Talanta.,2003, 60, 17-24.

[29] A. Afkhami, T. Madrakian, S.J. Sabounchei, M. Rezaei, S. Samiee, Sens. Actuators B.,2012, 161, 542– 548.  

[30] H. Ashkenani, M.A. Taher, Microchim. Acta., 2012, 178, 53–60.

[31] A. Afkhami, T. Madrakian, S.J. Sabounchei, M. Rezaei, S. Samiee, Sens. Actuators B., 2012, 161, 542-548.

[32] T. Alizadeh, M.R. Ganjali, P. Nourozi, M. Zare, M.A. Hoseini, J. Electroanal. Chem., 2011, 657, 98-106.