Document Type: Original Research Article
Authors
- Abdul Qudair Baig ^{} ^{} ^{1}
- Adnan Amin ^{} ^{2}
- Mohammad Reza Farahani ^{} ^{3}
- Muhammad Imran ^{} ^{4}
- Murat Cancan ^{} ^{5}
- Mehmet Serif Aldemir ^{} ^{6}
^{1} Department of Mathematics and Statistics, Institute of Southern Punjab, Multan, Pakistan
^{2} Department of Mathematics, COMSATS Institute of Information Technology, Attock, Pakistan
^{3} Department of Mathematics, Iran University of Science and Technology (IUST) Narmak, 16844, Tehran, Iran
^{4} Department of Mathematical Sciences, United Arab Emirates UniversityP.O. Box 17551, Al Ain, United Arab Emirates
^{5} Faculty of Education, Van Yuzuncu Yıl University, Zeve Campus, Tuşba, 65080, Van, Turkey
^{6} Faculty of Science, Van Yuzuncu Yıl University, Zeve Campus, Tuşba, 65080, Van, Turkey
Abstract
A topological index of G is a quantity related to G that characterizes its topology. Properties of the chemical compounds and topological invariants are related to each other. In this paper, we derive the algebraic polynomials including first and second Zagreb polynomials, and forgotten polynomial for p _{m+F}p _{m}. Further, we worked on the hyper-Zagreb, first and second multiple Zagreb indices, and forgotten index of these graphs. Consider the molecular graph with atoms to be taken as vertices and bonds can be shown by edges. For such graphs, we can determine the topological descriptors showing their bioactivity as well as their physiochemical characteristics. Moreover, we derive graphical representation of our outcomes, depicting the technical dependence of topological indices and polynomials on the involved structural parameters.
Graphical Abstract
Keywords
Main Subjects
[1] G.H. Shirdel, H. Rezapour, A.M. Sayadi. Iranian, J. Math. Chem., 2013, 4, 213-220.
[2] M. Ghorbani, N. Azimi, Iran. J. Math. Chem., 2012, 3, 137-143.
[3] B. Furtula, I. Gutman, J. Math. Chem., 2015, 53, 11841190.
[4] I. Gutman, N. Trinajstić, Chem. Phys. Lett., 1972, 17, 535-538.
[5] A. Mukhtar, R. Murtaza, A.Q. Baig, M.R. Azhar, T. Zhao, J. Inf. Opt. Sci., 2020, 41, 1077–1091.
[6] S. Hayat, M. Imran, Appl. Math. Comput., 2014, 240, 213-228.
[7] A.Q. Baig, M. Imran, H. Ali, Can. J. Chem. 2015, 93, 730-739.
[8] A.Q. Baig, M. Imran, W. Khalid, M. Naeem, Can. J. Chem., 2017, 95, 674-686.
[9] X. Zhang, A. Razzaq, K. Ali, S. T. R. Rizvi, M.R. Farahani, J. Inf. Opt. Sci., 2020, 41, 865–877.
[10] M.S. Sardar, S.A. Xu, W. Sajjad, S. Zafar, I. N. Cangul, M.R. Farahani, J. Inf. Opt. Sci., 2020, 41, 879–890
[11] M.N. Husin, F. Asif, Z. Zahid, S. Zafar, J. Inf. Opt. Sci., 2020, 41, 891–903.
[12] Z. Ahmad, A.Q. Baig, M.R. Azhar, M. Imran, J. Inf. Opt. Sci., 2020, 41, 905–924.
[13] M. Cancan, S. Ediz, S. Fareed, M.R. Farahani, J. Inf. Opt. Sci., 2020, 41, 925–932.
[14] M. Alaeiyan, F. Afzal, M.R. Farahani, M.A. Rostami, J. Inf. Opt. Sci., 2020, 41, 933–939.
[15] M. N. Husin, A. Ariffin, M. Alaeiyan, J. Inf. Opt. Sci., 2020, 41, 941–948.
[16] M. Cancan, S. Ediz, M. Alaeiyan, M.R. Farahani, J. Inf. Opt. Sci., 2020, 41, 949–957.
[17] W. Sajjad, M. Sh. Sardar, M. Cancan, S. Ediz, A.Q. Baig, J. Inf. Opt. Sci., 2020, 41, 959–972.
[18] Amer, M. Naeem, H. Ur Rehman, M. Irfan, M.S. Saleem, H. Yang, J. Inf. Opt. Sci., 2020, 41, 973–990.
[19] M. Cancan, M. Naeem, A.Q. Baig, W. Gao, A. Aslam, J. Inf. Opt. Sci., 2020, 41, 991–1006.
[20] M. Cancan, M. Naeem, A. Aslam, Wei Gao, A.Q. Baig, J. Inf. Opt. Sci., 2020, 41, 1007–1024.
[21] M. Imran, M. Naeem, A.Q. Baig, J. Inf. Opt. Sci., 2020, 41, 1025–1041.
[22] F. Afzal, S. Hussain, D. Afzal, S. Razaq, J. Inf. Opt. Sci., 2020, 41, 1061–1076.
[23] U.K. Faraji, M. Alaeiyan, M. Golriz, A.R. Gilani, J. Inf. Opt. Sci., 2020, 41, 1077–1091.
[24] M. Cancan, S. Ediz, H.M. Ur-Rehman, D. Afzal, J. Inf. Opt. Sci., 2020, 41, 1117–1131.