Web of Science (Emerging Sources Citation Index)

Document Type: Original Research Article

Authors

1 MCS, National University of Sciences and Technology, Islamabad, Pakistan

2 Department of Mathematics, Lahore College for Women University, Jhang Campus, Jhang, Pakistan

3 Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan

4 Faculty of Education, Van Yüzüncü Yıl University, Van, Turkey

5 Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey

Abstract

The entropy of a graph is a functional depending both on the graph itself and on a probability distribution on its vertex set. This graph functional originated from the problem of source coding in information theory and was introduced by J. Krner in 1973. Although the notion of graph entropy has its roots in information theory, it was proved to be closely related to some classical and frequently studied graph theoretic concepts. In this article, we obtained the graph entropy with Randić, geometric-arithmetic, harmonic, first Zagreb, second Zagreb, atom bond connectivity, sum connectivity index and augmented Zagreb indices for Zig-Zag chain of 8-cycles molecular graph.

Graphical Abstract

Keywords

Main Subjects

[1] A. Loghman, L. Badakhshiana, Dig. J. Nanomater, Biostructures, 2008, 3, 299-302.

[2] B. Furtula, I. Gutman, J. Math Chem., 2015, 53, 1184-1190.

[3] M. Baca, J. Horvathova, M. Mokrisova, A. Semanicova-Fenovckova, A. Suhanyiova, Can. J. Chem., 2015, 93, 901-919.

[4] M. R. Farahani, Chem. Phy. Res. J., 2013, 6, 27-33.

[5] M.R. Farahani, M.P. Vlad, Studia Ubb Chemia., 2013, 58, 133-142.

[6] W. Gao and M.R. Farahani, J. Nanotech., 2016, 37, 1-6.

[7] W. Gao, M.R. Farahani, Appl. Math. Nonlinear Sci., 2015, 1, 94-117.

[8] W. Gao, L. Shi, IAENG Int. J. Appl. Math., 2015, 45, 138-150.

[9] H. Yang, M. Naeem, A.Q. Baig, H. Shaker, M. K. Siddiqui, J. Discret. Math. Sci. Cryptogr., 2019, 22, 1177-1187.

[10] X. Zhang, A. Razzaq, K. Ali, S.T.R. Rizvi, M.R. Farahani, J. Inf. Opt. Sci., 2020, 41, 865–877.

[11] (a) M.S. Sardar, S-A. Xu, W. Sajjad, S. Zafar, I.N. Cangul, M.R. Farahani, J. Inf. Opt. Sci., 2020, 41, 879–890. (b) M.N. Husin, F. Asif, Z. Zahid, S. Zafar, J. Inf. Opt. Sci., 2020, 41, 891–903.

[12] Z. Ahmad, A.Q. Baig, M.R. Azhar, M. Imran, J. Inf. Opt. Sci., 2020, 41, 905–924.

[13] M. Cancan, S. Ediz, S. Fareed, M.R. Farahani, J. Inf. Opt. Sci., 2020, 41, 925–932.

[14] M. Alaeiyan, F. Afzal, M.R. Farahani, M.A. Rostami, J. Inf. Opt. Sci., 2020, 41, 933–939.

[15] M.N. Husin, A. Ariffin, M. Alaeiyan, J. Inf. Opt. Sci., 2020,  41, 941–948.

[16] M. Cancan, S. Ediz, M. Alaeiyan, M.R. Farahani, J. Inf. Opt. Sci., 2020, 41, 949–957.

[17] W. Sajjad, M.S. Sardar, M. Cancan, S. Ediz, A.Q. Baig, J. Inf. Opt. Sci., 2020, 41, 959–972.

[18] X. Zhang, H.Q. Jiang, J.B. Liu, Z.H. Shao, Molecules, 2018, 23, 1731-. DOI: 10.3390/molecules23071731

[19] M. Alaeiyan, C. Natarajan, G. Sathiamoorthy, M.R. Farahani, Eurasian Chem. Commun., 2020, 2, 646-651.

[20] H. Yang, X. Zhang, J. D. Math. Sci. and Cryp., 2018, 21, 1495-1507.

[21] M. Imran, S.A. Bokhary, S. Manzoor, M.K. Siddiqui, Eurasian Chem. Communm., 2020, 2, 680-687.

[22] Z. Ahmad, M. Naseem, M.K. Jamil, Sh. Wang, M.F. Nadeem, Eurasian Chem. Commun., 2020,2, 712-721.

[23] Z. Ahmad, M. Naseem, M.K. Jamil, M.K. Siddiqui, M.F. Nadeem, Eurasian Chem. Commun., 2020, 2, 663-671.

[24] M. Cancan, S. Ediz, M.R. Farahani, Eurasian Chem. Commun., 2020,2, 641-645.

[25] A.Q. Baig, M. Naeem, W. Gao, J.B. Liu, Eurasian Chem. Commun., 2020, 2, 634-640.

[26] F. Afzal, M.A. Razaq, D. Afzal, S. Hameed, Eurasian Chem. Commun., 2020, 2, 652-662.