Document Type : Original Research Article
Authors
1 Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
2 Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
Abstract
This study reported the electrochemical sensor for sensitive determination of methionine based on CuO nanoflowers (CuO NFs) supported on glassy carbon electrode (GCE). Therefore, we utilized cyclic voltammetry (CV), chronoamperometry (CHA) as well as differential pulse voltammetry (DPV) for characterizing the sensor performance. This CuO NFs/GCE has been found to have very good electrochemical catalytic activity toward methionine oxidation. The oxidation overpotential of methionine decreased significantly and its oxidation peak current increased dramatically at CuO NFs/GCE. Moreover, the sensor showed a linear response for detecting methionine in the broad ranges from 1.0-300.0 µM with a low limit of detection (LOD) equal to 0.3 µM. Finally, we employed CuO NFs/GCE as a highly sensitive tool to analyze methionine in real sample (urine).
Graphical Abstract
Keywords
Main Subjects
[1] N. Tavakkoli, N. Soltani, E. Khorshidi, RSC Adv., 2017, 7, 21827-21836.
[2] A. Salimi, M. Roushani, Electroanalysis, 2006, 18, 2129-2136.
[3] A. DiRocco, M. Tagliati, D. Dorfman, J. Moise, D. Simpson, Neurology, 1996, 46, 6124.
[4] S. Toyokuni, K. Okamoto, J. Yodoi, H. Hiai, FEBS Lett., 1995, 358, 1-3.
[5] P. Jandik, J. Cheng, J. Evrovski, N. Avdalovic, J. Chromatogr. B: Biomed. Sci. Appl., 2001, 759, 145-151.
[6] A. Zinellu, S. Sotgia, M.F. Usai, E. Zinellu, A.M. Posadino, L. Gaspa, R. Chessa, A. Pinna, F. Carta, L. Deiana, Anal. Biochem., 2007, 363, 91-96.
[7] S.P. Stabler, P.D. Marcell, E. R. Podell, R. H. Allen, Anal. Biochem., 1987, 162, 185-196
[8] D.R. Murphy-Chutorian, M.P. Wexman, A.J. Grieco, J.A. Heininger, E. Glassman, G.E. Gaull, S.K. Ng, F. Feit, K. Wexman, A.C. Fox, J. Am. Coll. Cardiol., 1985, 6, 725-730.
[9] S.H. Mudd, N. Braverman, M. Pomper, K. Tezcan, J. Kronick, P. Jayakar, C. Garganta, M.G. Ampola, H.L. Levy , S.E. McCandless, Mol. Genet. Metab., 2003, 79, 6-16.
[10] Z. Deáková, Z. Ďuračková, D.W. Armstrong, J. Lehotay, J. Chromatogr. A, 2015, 1408, 118-124.
[11] L. Kuang, L. Zhang, A.Z. Xu, Z.M. Li, R.P. Liang, J.D. Qiu, Sens. Actuators B: Chem., 2017, 244, 1031-1036.
[12] P.C. Huang, N. Gao, J.F. Li, F.Y. Wu, Sens. Actuators B: Chem., 2018, 255, 2779-2784.
[13] M. Kameya, M. Himi, Y. Asano, Anal. Biochem., 2014, 447, 33-38.
[14] Y. Li, S. Mei, S. Liu, X. Hun, J. Pharm. Biomed. Anal., 2019, 165, 94-100.
[15] Y. Shinohara, H. Hasegawa, K. Tagoku, T. Hashimoto, J. chromatogr. B: Biomed. Sci. Appl., 2001,758, 283-288.
[16] H.M.A. Hasan, I.H. Habib, A.M. Ali, Eur. Chem. Bull., 2017, 6, 355-358.
[17] N.A. Odewunmi, A.N. Kawde, M. Ibrahim, Sens. Actuators B: Chem., 2019, 281,765-773.
[18] L. Agüı, J. Manso, P. Yáñez-Sedeño, J. Pingarrón, Talanta, 2004, 64, 1041-1047.
[19] F. Chekin, S. Bagheri, S.B.A. Hamid, Sens. Actuators B: Chem., 2013, 177, 898-903.
[20] H. Beitollahi, S. Tajik, F. Garkani-Nejad, M. Safaei, J. Mater. Chem. B, 2020, 8, 5826-5844.
[21] A.J. Jeevagan, S.A. John, Bioelectrochemistry, 2012, 85, 50-55.
[22] H. Karimi‐Maleh, F. Karimi, M. Alizadeh, A. L. Sanati, Chem. Rec. 2020, 20, 682-692.
[23] N. Rabiee, M. Safarkhani, M. Rabiee, Asian J. Nanosci. Mater., 2018, 1, 63-73.
[24] H. Beitollahi, F. Garkani-Nejad, S. Tajik, M. R. Ganjali, Iran. J. Pharm. Res., 2019, 18, 80.
[25] M. Bijad, H. Karimi‐Maleh, M.A. Khalilzadeh, Food Anal. Methods, 2013, 6, 1639-1647.
[26] P. Prasad, N.Y. Sreedhar, Chem. Methodol., 2018, 2, 277-290.
[27] N.B. Messaoud, M.E. Ghica, C. Dridi, M.B. Ali, C.M. Brett, Sens. Actuators B: Chem., 2017, 253, 513-522.
[28] J. Ghodsi, A.A. Rafati, Y. Shoja, Adv. J. Chem. A, 2018, 1, 39-55.
[29] H. Beitollahi, H. Mahmoudi-Moghaddam, S. Tajik, Anal. Lett., 2019, 5, 1432-1444.
[30] J. V. Piovesan, E.R. Santana, A. Spinelli, J. Electroanal. Chem., 2018, 813, 163-170.
[31] F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, Talanta, 2018, 176, 208-213.
[32] W. Liu, Q. Shi, G. Zheng, J. Zhou, M. Chen, Anal. Chim. Acta, 2019, 1075, 81-90.
[33] M. Rizwan, M. Hazmi, S.A. Lim, M.U. Ahmed, J. Electroanal. Chem., 2019, 833, 462-470.
[34] M.R. Ganjali, H. Beitollahi, R. Zaimbashi, S. Tajik, M. Rezapour, B. Larijani, Int. J. Electrochem. Sci., 2018, 13, 2519-2529.
[35] S. Alavi-Tabari, M.A. Khalilzadeh, H. Karimi-Maleh, J. Electroanal. Chem., 2018, 811, 84-88.
[36] A. Özcan, D. Topçuoğulları, A.A. Özcan, Sens. Actuators B: Chem., 2019, 284, 179-185.
[37] M.R. Ganjali, Z. Dourandish, H. Beitollahi, S. Tajik, L. Hajiaghababaei, B. Larijani, Int. J. Electrochem. Sci., 2018, 13, 2448-2461.
[38] A. Baghizadeh, H. Karimi-Maleh, Z. Khoshnama, A. Hassankhani, M. Abbasghorbani, Food Anal. Methods, 2015, 8, 549-557.
[39] S. Mohammadi, A. Taheri, Z. Rezayati-Zad, Prog. Chem. Biochem. Res., 2018 , 1, 1-10.
[40] H. Beitollahi, F. Garkani-Nejad, S. Tajik, Sh. Jahani, P. Biparva, Int. J. Nano Dimens, 2017, 8, 197-205.
[41] W.H. Elobeid, A.A .Elbashir, Prog. Chem. Biochem. Res., 2019, 2, 24-33.
[42] S. Tajik, M.A. Taher, H. Beitollahi, Ionics, 2014, 20, 1155-1161.
[43] M. Miraki, H. Karimi-Maleh, M.A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V.K. Gupta, J. Mol. Liq., 2019, 278, 672-676.
[44] D. Perevezentseva, K. Skirdin, E. Gorchakov, V. Bimatov, Key Eng. Mater., 2016, 685, 563-568.
[45] H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, F. Şen, Mater. Chem. Phys., 2020, 250, 123042.
[46] M.M. Motaghi, H. Beitollahi, S. Tajik, R. Hosseinzadeh, Int. J. Electrochem. Sci., 2016, 11, 7849-7860.
[47] H. Karimi-Maleh, F. Karimi, Y. Orooji, Gh. Mansouri, A. Razmjou, A. Aygun, F. Sen, Sci. Rep., 2020, 10, 11699.
[48] G. Vinodhkumar, R. Ramya, M. Vimalan, I. Potheher, A. Cyrac Peter, Prog. Chem. Biochem. Res., 2018, 1, 40-49.
[49] H. Beitollahi, Z. Dourandish, S. Tajik, M.R. Ganjali, P. Norouzi, F. Faridbod, J. Rare Earth., 2018, 36, 750-757.
[50] H. Karimi-Maleh, F. Karimi, S. Malekmohammadi, N. Zakariae, R. Esmaeili, S. Rostamnia, M.L. Yola, N. Atar, Sh. Movagharnezhad, S. Rajendran, A. Razmjou, Y. Orooji, S. Agarwal, V.K. Gupta, J. Mol. Liq., 2020, 310, 113185.
[51] H. Mahmoudi-Moghaddam, S. Tajik, H. Beitollahi, Microchem. J., 2019, 150, 104085.
[52] P. Bollella, G. Fusco, C. Tortolini, G. Sanzo`, G. Favero, L. Gorton , R. Antiochia, Biosens. Bioelectron., 2017, 89, 152–166.
[53] H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N.W. Maxakato, A. Abbaspourrad, New J. Chem., 2019, 43, 2362-2367.
[54] B. Mahmoud, M. Khairy, F. Rashwan, C. Fosterb, C. Banks, RSC Adv., 2016, 6, 14474–14482.
[55] Y. Wang, D. Fan, D. Wu, Y. Zhang, H. Ma, B. Du , Q. Wei, Sens. Actuators B: Chem., 2016, 236, 241–248.
[56] A. J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd ed. Wiley, New York, 2001.