Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

2 Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran

Abstract

The present research presented a novel modification approach for modifying a glassy carbon electrode on the basis of the Ce3+/NiO hexagonal nanoparticles (Ce3+/NiO hexagonal NPs/GCE). In so doing, we devised the new modified electrode for using as one of the sensitive sensors for detecting the trace amounts of hydrochlorothiazide. Moreover, it is an acceptable electrocatalyst for catalytic oxidation of hydrochlorothiazide by shifting the overpotential toward less positive potential and enhancing catalytic current in comparison to the bare GCE. In a concentration range 0.1 to 700.0 μM in a phosphate buffer solution (PBS) at a pH of 7.0, the responses were linear and hydrochlorothiazide detection limit for this method was 0.03 μM (S/N=3). Furthermore, this sensor successfully detected hydrochlorothiazide in hydrochlorothiazide tablets and urine samples with satisfactory recovery ranges, indicating a promising application in biological samples, pharmaceutical compounds analysis and clinical diagnosis.

Graphical Abstract

Sensitive detection of hydrochlorothiazide using Ce3+/NiO hexagonal nanoparticles modified glassy carbon electrode

Keywords

Main Subjects

[1] S. Ahmed, N.N. Atia, N.A. Mohamed, Talanta, 2011, 84, 666–672.
[2] D.T. Gimenes, M.C. Marra, J.M. de-Freitas, R.A. Abarza-Munoz, E.M. Richter, Sens. Actuators B: Chem., 2015, 212, 411-418.
[3] P.A. James, S. Oparil, B.L. Carter, W.C. Cushman, C. Dennison-Himmelfarb, J. Handler, D.T. Lackland, M.L. LeFevre, T.D. MacKenzie, O. Ogedegbe, S.C. Smith, L.P. Svetkey, S.J. Taler, R.R. Townsend, J.T. Wright, A.S. Narva, E. Ortiz, JAMA, 2014, 311, 507-520.
[4] H. Beitollahi, F. Ebadi-Nejad, F. Shojaie, M. Torkzadeh-Mahani, Anal. Methods, 2016, 8, 6185-6193.
[5] J.A. Schoenberger, J. Hypertens. Suppl., 1995, 13, S43–S47.
[6] L.E. Ramsay, W.W. Yeo, J. Hypertens. Suppl., 1995, 13, S73–S76.
[7] N. Kumar, R.N. Goyal, J. Electrochem. Soc., 2017, 164, B240.
[8] C.A.R. Salamanca-Neto, A.P.P. Eisele, V.G. Resta, J. Scremin, E.R. Sartori, Sens. Actuators B: Chem., 2016, 230, 630-638.
[9] M.M. Ayad, M.M. Hosny, A.E. Ibrahim, O. M. El-Abassy, F.F. Belal, J. Iran. Chem. Soc., 2020, 17, 1725–1730.
‏[10] E.F. Elkady, A.A. Mandour, F.K. Algethami, A.A. Aboelwafa, F. Farouk, Microchem. J., 2020, 155, 104757.
[11] H. Syahputra, M.S.A. Muchlisyam, M. A. Masfria, Asian J. Pharm. Res. Develop., 20197, 1-4.‏
[12] H.T. Purushothama, Y.A. Nayaka, Chem. Phys. Lett., 2019734, 136718.
[13] H. Karimi‐Maleh, F. Karimi, M. Alizadeh, A. L. Sanati, Chem. Rec., 2020, 20, 682-692.
[14] A.J. Jeevagan, S.A. John, Bioelectrochemistry, 2012, 85, 50-55.
[15] T. Jiang, L.Qi, X. Lu, C. Hou, W. Qin, J. Electroanal. Chem., 2020, 878, 114562.
[16] H. Beitollahi, F. Garkani-Nejad, S. Tajik, M. R. Ganjali, Iran. J. Pharm. Res., 201918, 80-90.
[17] H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N.W. Maxakato, A. Abbaspourrad, New J. Chem., 2019, 43, 2362-2367.‏
[18] T.T. Calam, Electroanalysis2020, 32, 149-158.‏
[19] H. Beitollahi, H. Mahmoudi-Moghaddam, S. Tajik, Anal. Lett., 2019, 5, 1432-1444.
[20] C. Raril, J.G. Manjunatha, Microchem. J., 2020, 154, 104575.
[21] S. Alavi-Tabari, M.A. Khalilzadeh, H. Karimi-Maleh, J. Electroanal. Chem., 2018, 811, 84-88.
[22] J.V. Piovesan, E.R. Santana, A. Spinelli, J. Electroanal. Chem., 2018, 813, 163-170.
[23] H. Beitollahi, S. Tajik, F. Garkani-Nejad, M. Safaei, 2020, J. Mater. Chem. B, ‏2020, 8, 5826-5844.
[24] B. Ibarlucea, A.P. Roig, D. Belyaev, L. Baraban, G. Cuniberti, Microchim. Acta2020, 187, 1-11.‏
[25] M. Rizwan, M. Hazmi, S.A. Lim, M.U. Ahmed, J. Electroanal. Chem., 2019, 833, 462-470.
[26] M.R. Ganjali, Z. Dourandish, H. Beitollahi, S. Tajik, L. Hajiaghababaei, B. Larijani, Int. J. Electrochem. Sci., 2018, 13, 2448-2461.‏
[27] F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, Talanta, 2018, 176, 208-213.
[28] A. Özcan, D. Topçuoğulları, A. A. Özcan, Sens. Actuators B: Chem., 2019, 284, 179-185.
[29] H. Beitollahi, F. Garkani-Nejad, S. Tajik, Sh. Jahani, P. Biparva, Int. J. Nano Dimens, 2017, 8, 197-205.‏
[30] A. Baghizadeh, H. Karimi-Maleh, Z. Khoshnama, A. Hassankhani, M. Abbasghorbani, Food Anal. Methods, 2015, 8, 549-557.
[31] A.R. Marlinda, S. Sagadevan, N. Yusoff, A. Pandikumar, N.M. Huang, O. Akbarzadeh, M.R. Johan, J. Alloys Compd., 2020, 847, 156552.
[32] S. Tajik, M.A. Taher, H. Beitollahi, Ionics2014, 20, 1155-1161.‏
[33] L. Durai, S. Badhulika, Sens. Actuators B: Chem., 2020, 325, 128792.
[34] M.R. Ganjali, H. Beitollahi, R. Zaimbashi, S. Tajik, M. Rezapour, B. Larijani, Int. J. Electrochem. Sci., 2018, 13, 2519-2529.‏
[35] M. Bijad, H. Karimi-Maleh, M.A. Khalilzadeh, Food Anal. Methods, 2013, 6, 1639-1647.
[36] D. Perevezentseva, K. Skirdin, E. Gorchakov, V. Bimatov, Key Eng. Mater., 2016, 685, 563-568.
[37] M.M. Motaghi, H. Beitollahi, S. Tajik, R. Hosseinzadeh, Int. J. Electrochem. Sci., 2016, 11, 7849-7860.
[38] H. Karimi-Maleh, F. Karimi, Y. Orooji, Gh. Mansouri, A. Razmjou, A. Aygun, F. Sen, Sci. Rep., 2020, 10, 11699.
[39] S. Sahoo, P.K. Sahoo, S. Manna, A.K. Satpati, J. Electroanal. Chem., 2020, 876, 114504.
[40] H. Karimi-Maleh, F. Karimi, S. Malekmohammadi, N. Zakariae, R. Esmaeili, S. Rostamnia, M.L. Yola, N. Atar, Sh. Movagharnezhad, S. Rajendran, A. Razmjou, Y. Orooji, S. Agarwal, V.K. Gupta, J. Mol. Liq., 2020, 310, 113185.
[41] H. Beitollahi, Z. Dourandish, S. Tajik, M. R. Ganjali, P. Norouzi, F. Faridbod, J. Rare Earth., 2018, 36, 750-757.‏
[42] H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, F. Şen, Mater. Chem. Phys., 2020, 250, 123042.
[43] H. Mahmoudi-Moghaddam, S. Tajik, H. Beitollahi, Microchem. J., 2019, 150, 104085.
[44] A. Salimi, E. Sharifi, A. Noorbakhash, S. Soltanian, Biosens. Bioelectron., 2007, 22, 3146–3153.
[45] A. Salimi, A. Noorbakhash, E. Sharifi, A. Semnani, Biosens. Bioelectron., 2008, 24, 792–798.
[46] A. Salimi, E. Sharifi, A. Noorbakhash, S. Soltanian, Electrochem. Commun., 2006, 8, 1499–1508.
[47] A.B. Moghaddam, M.R. Ganjali, R. Dinarvand, S. Ahadi, A.A. Saboury, Biophys. Chem., 2008, 134, 25–33.
[48] A. Mohammadi, A.B. Moghaddam, M. Kazemzad, R. Dinarvand, J. Badraghi, Mater. Sci. Eng. C, 2009, 29, 1752–1758.
[49] M. Miraki, H. Karimi-Maleh, M.A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V.K. Gupta, J. Mol. Liq., 2019, 278, 672-676.‏
[50] P. Muthukumaran, C. V.Raju, C. Sumathi, G. Ravi, D. Solairaj, P. Rameshthangam, J. Wilson, S. Rajendran, S. Alwarappan, New J. Chem., 2016, 40, 2741-2748.‏
[51] D. Han, X. Jing, J. Wang, P. Yang, P.D. Song, J. Liu, J. Electroanal. Chem., 2012, 682, 37–44.
[52] A. Paravannoor, R. Ranjusha, A. M. Asha, R. Vani, S. Kalluri, K.R.V. Subramanian, N. Sivakumar, T.N. Kim, S.V. Nair, A. Balakrishnan, Chem. Eng. J.,2013, 220, 360–366.
[53] H. Dan, C. Ye, Z.M. Lin, S. Chang, Z.C. Xia, X.P. Cheng, J. Electrochem., 2006, 12, 333–336.
[54] G. Hu, C. Tang, C. Li, H. Li, Y. Wang, H. Gong, J. Electrochem. Soc., 2011, 158, A695–A699.
[55] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd ed. Wiley, New York, 2001.
[56] H. Heli, J. Pishahang, H.B. Amiri, N. Sattarahmady, Microchem. J., 2017, 130, 205-212.‏
[57] A. Totaganti, S.J. Malode, D.S. Nayak, N.P. Shetti, Mater. Today: Proceedings2019, 18, 542-549.‏
[58] F.F. Hudari, J.C. Souza, M.V.B. Zanoni, Talanta2018, 179, 652-657.‏
[59] A. Jafari-Kashi, M. Shabani-Nooshabadi, Anal. Bioanal. Electrochem., 2018, 10, 1016-1030.‏
[60] C. González-Vargas, N. Serrano, C. Ariño, R. Salazar, M. Esteban, J.M. Díaz-Cruz, Chemosensors2017, 5, 25.