Web of Science (Emerging Sources Citation Index)

Document Type : Original Research Article

Authors

1 Faculty of Education, Van Yuzuncu Yıl University, Zeve Campus, Tuşba, 65080, Van, Turkey

2 Faculty of Science, Bingöl University, Turkey

3 Department of Applied Mathematics, Iran University of Science and Technology, Tehran, Iran

Abstract

Topological indices are important tools for QSPR researches. Wiener, Zagreb, and Randić indices are pioneers of topological indices as the most used topological indices in view of chemistry and chemical graph theory. These three topological indices have been used for modeling physical properties of octanes and other chemical molecules. We firstly define k-total distance degree notion, k-total Zagreb and k-total Randić indices in graph theory. We investigated the prediction power of 3-total Zagreb indices and 3-total Randić index by using some physical properties of octanes such as entropy, acentric factor, enthalpy of vaporizatian and standard enthalpy of vaporization. We showed that these 3-total distance degree based novel indices are possible tools for QSPR studies, which they give a reasonably good correlation greater than 0.92 for modeling acentric factor of octanes. We also showed that 3-total indices give a strong correlation with Wiener index and the second Zagreb index.

Graphical Abstract

A note on QSPR analysis of total Zagreb and total Randić İndices of octanes

Keywords

Main Subjects

 [1]        F.A.M. Naji, N.D. Soner, I. Gutman, Commun. Comb. Optim, 2017, 3, 179-194

 [2]       M. Chellali, T.W. Haynes, S.T. Hedetniemi, T.M. Lewis, Dis. Math., 2017, 340, 31-38.

 [3]        I. Gutman, N. Trinajstić, Chem. Phys. Lett., 1972, 17, 535–538.

 [4]       M. Randić, J. Am. Chem. Soc., 1975, 97, 6609-6615

 [5]       H. Wiener, J. Amer. Chem. Soc., 1947, 69, 17–20.

 [6]       H. Hua, MATCH Commun. Math. Comput. Chem., 2020,83, 95-107.

 [7]       H. Lin, MATCH Commun. Math. Comput. Chem., 2020, 83,85-94.

 [8]       M. Knor, R. Škrekovski, MATCH Commun. Math. Comput. Chem., 2020,83, 109-120.

 [9]       A. Jahanbani, Palestine J. Math., 2020,9, 82-96.

 [10]   F. Gao, F.K. Xu, Rocky Mountain J. Math., 2020, 50, 975-988.

 [11]   N. Dehgardi, H. Aram, Kragujevac J. Math.,  2020,44, 509-522.

 [12]   M.K. Jamil, M. Imran, A. Javed, R. Hasni, AIMS Math.,  2021,6, 532-542.

 [13]   S. Elumalai, T. Mansour, Asian-Eur. J. Math.,  2020,13,ID:2050105.

 [14]   A. Jahanbani, Polycyclic Aromatic Compounds 2021, https: //doi.org/10.1080/10406638.2020.1809472(in press).

 [15]   G. Arizmendi, O. Arizmendi, Linear Algebra Appl., 2020,609, 332-338.

 [16]   M.K. Jamil, I. Tomescu, M. Imran, A. Javed, Math.,  2020,8, ID: 98.

 [17]   S. Ediz, Int. J. Systems Sci. Appl. Math. 2017, 2,  87-92.

 [18]   B. Sahin, S. Ediz, Iranian J. Math. Chemistry2018,9,263-277.

 [19]   S. Ediz, Int. J. Com. Sci. Math.,  2018, 9, 1-12.

 [20]   D. Afzal, S. Hussain, M. Aldemir, M. Farahani, F. Afzal, Eurasian Chem. Commun., 2020, 2, 1117-1125.

 [21]   F. Afzal, S. Hussain, D. Afzal, S. Razaq, J. Inf. Opt. Sci., 2020, 41, 1061–1076.

 [22]   M. Cancan, S. Ediz, M.R. Farahani, Eurasian Chem. Commun., 2020, 2, 641-645.

 [23]   A.Q. Baig, M. Naeem, W. Gao, J.B. Liu, Eurasian Chem. Commun., 2020, 2, 634-640.

 [24]   F. Afzal, M.A. Razaq, D. Afzal, S. Hameed, Eurasian Chem. Commun., 2020, 2, 652-662.

 [25]   M. Alaeiyan, C. Natarajan, G. Sathiamoorthy, M.R. Farahani, Eurasian Chem. Commun., 2020, 2, 646-651.

 [26]   Z. Ahmad, M. Naseem, M.K. Jamil, Sh. Wang, M.F. Nadeem, Eurasian Chem. Commun., 2020, 2, 712-721.

 [27]   Z. Ahmad, M. Naseem, M.K. Jamil, M.K. Siddiqui, M.F. Nadeem, Eurasian Chem. Commun., 2020, 2, 663-671.

 [28]   M. Cancan, S. Ediz, M.R. Farahani, Eurasian Chem. Commun., 2020, 2, 641-645.

 [29]   A.Q. Baig, M. Naeem, W. Gao, J.B. Liu, Eurasian Chem. Commun., 2020, 2, 634-640.

 [30]   F. Afzal, M.A. Razaq, D. Afzal, S. Hameed, Eurasian Chem. Commun., 2020, 2, 652-662.

[31]   F. Afzal, S. Hussain, D. Afzal, S. Hameed, Open Chem., 2020, 18, 1362–1369.

[32] F. Afzal, S. Hussain, D. Afzal, S. Razaq, J. Inf. Opt. Sci., 2020, 41, 1061-1076.

[33] M. Cancan, D. Afzal, S. Hussain, A. Maqbool, F. Afzal, J. Dis. Math. Sci. Cryp., 2020, 23, 1157-1171.

[34] M. Cancan, S. Ediz, H. Mutee-Ur-Rehman, D. Afzal, J. Inf. Opt. Sci., 2020, 41, 1117-1131.

[35] M.R. Farahani, Acta Chim. Slov., 2012, 59, 965-968.

[36] Z. Shao, A.R. Virk, M.S. Javed, M.A. Rehman, M.R. Farahani, O pen Appl. Sci. Let., 2019, 2, 01-11.

[37] M.R. Farahani, World Appl. Sci. J., 2012, 20, 1248-1251.

[38] M.H.A. Siddiqui, M.R. Farahani, Open J. Math. Anal., 2017, 1, 45-60.

[39] M.R. Farahani, Int. J. Theor.l Chem., 2013, 1, 01-09.

[40] M.R. Farahani, Chem. Phys. Res, J., 2013, 6, 27-33.

[41] M.R. Farahani, W. Gao, J. Chem. Pharmaceutical Research, 2015, 7, 535-539.

[42] M.R. Farahani, J. Chem. Acta., 2013, 2, 22-25.

[43] W. Gao, M.R. Farahani. J. Nanotech, 2016, 2016, Article ID 3129561, 1-6.