Web of Science (Emerging Sources Citation Index), ISC

Document Type : Original Research Article


1 College of Life Science, Northwest Normal University, Lanzhou 730070, China

2 Department of Biology, Faculty of Education, University of Khartoum, Khartoum, 11111, Sudan

3 College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China


Polysaccharides have multiple significant roles and possess extensive bioactivities in field of medicine, healthcare, food and cosmetic industries, because of their therapeutic effects and relatively minimal toxicity. For the first time, we investigated the chemical structure of Ziziphus spina Christ fruits polysaccharides fraction. The plant is classified as one of the most important Sudanese medical plant, still not adequately researched.
The Z. spina Christi polysaccharides fraction was extracted by using cold water extraction method, deproteinized via Savage’s method, then after participated by using ethanol 80%, the precipitant fractions were dried via lyophilized for 24h. ZSCFPs was investigated by using colorimetric and analytic methods; the colorimetric assays were carried out to determine some functional groups in the polysaccharides fraction such as phenol-sulfuric acid, sulfuric acid - carbazole reaction, ferric chloride reaction. The analytical assays were carried out to confirm the chemical structure of the ZSCFP 80%, which were FTIR spectra, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and X-ray diffraction (XRD).

Graphical Abstract

Characterization of chemical structure of water-soluble polysaccharides from Sudanese Ziziphus spina Christi fruits


Main Subjects

[1] L. Chen, L., Huang, G. Hu, Int. J. Biol. Macromol., 2018, 108, 408–411.
[2] L. Cai, B. Chen, F. Yi, S. Zou, Int. J. Biol. Macromol., 2019, 140, 907–919.
[3] H. Wang, Y. Li,    Z. Ren,   Z. Cong,  M. Chen, L. Shi, X Han, J. Pei, Int. J. Biol. Macromol., 2018, 112, 473–482.
[4] Y. Hilmi, M.F. Abushama, H. Abdalgadir, A. Khalid, H. Khalid, BMC Complement. Altern. Med., 2014, 14, 1–5.
[5] A. Dafni, Sh. Levy, E. Lev, J. Ethnobiol. Ethnomedicine, 2005, 1, 1-11.
[6] E.M. Abdallah, Int. J. Curr. Microbiol. Appl. Sci., 2017, 6, 38–44.
[7] L. Baghazadeh-Daryaii, G.R. Sharifi-Sirchi, D. Samsampoor, J. Appl. Res. Med. Aromat. Plants., 2017, 7, 99–107.
[8] M. Bahmani, A. Jalilian, I. Salimikia, S. Shahsavari, N. Abbasi, Plant Science Today, 2020, 7, 275–280.
[9] A. Fath El-Rahman, I. Munged, A. Tegani, A. Ibrahim, A. Mohamed, H. Mohamed, A. Mubarak, International Journal of Engineering and Applied Sciences, 2019, 11, 21–23.
[10] A.S. Saied, J. Gebauer, K. Hammer, A. Buerkert, Genet. Resour. Crop Evol., 2008, 55, 929–937.
[11] L. Shi, Int. J. Biol. Macromol., 2016, 92, 37–48.
[12] J. Xu, R-Q. Yue, J. Liu, H-M. Ho, T. Yi,  Int. J. Biol. Macromol., 2014, 67, 205–209.
[13] S. Zhang, X. Li, Int. J. Biol. Macromol., 2018, 115, 811–819.
[14] H. Liua, Y. Fanb, W. Wanga, N. Liua, H. Zhanga, Z. Zhua, A. Liu, Int. J. Biol. Macromol., 2012, 51, 417–422.
[15] S. Zhang, X. Li, Int. J. Biol. Macromol., 2018, 115, 811–819.
[16] X. Ji, F. Liu, Q. Peng, M. Wang, Food Chem., 2018, 245, 1124–1130.
[17] Sh. Zhua, J. Hua, Sh. Liua, Sh. Guoa, Y.  Jiaa, M. Lia, W. Kong, J. Liang, J. Zhang, J. Wang, Carbohydr. Polym., 2020, 246, 116545.
[18] K-ping Wang, J. Wang, Q. Li, Q-lin Zhang, R-xu You, Y. Cheng, L. Luo, Y. Zhang, Food Res. Int., 2014, 62, 223–232.
[19] S. Sasidharan, Y. Chen, D. Saravanan, K.M. Sundram, L. Yoga Latha, Lect. Notes Math., 2007, 1902, 121–130.
[20] S. Maiti, S. Mukherjee, R. Datta, Int. J. Biol. Macromol., 2014, 70, 20–25.
[21] A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, Indones. J. Sci. Technol., 2019, 4, 97–118.
[22] R. Vijayalakshmi, R. Ravindhran, Asian Pac. J. Trop. Biomed., 2012, 2, S1367–S1371.
[23] S. Ben Slima, N. Ktari, I. Trabelsi, H. Moussa, I. Makni, R. Ben Salah, Int. J. Biol. Macromol., 2018, 106, 168–178.
[24] X. Ji, C. Hou, Y. Yan, M. Shi, Y. Liu, Int. J. Biol. Macromol., 2020, 149, 1008–1018.