Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Review Article

Authors

1 aDepartment of Chemistry, College of Sciences, University of Baghdad, Iraq

2 Department of Chemistry, Collage of Sciences, University of Baghdad, Iraq

3 College of Pharmacy, Al-Nahrain University, Iraq

Abstract

In this study, new series of 2-aryl-3-(pyrimidine-2-ylamino)imidazo[1,2-a]pyrimidine derivatives (3-secondary amine) were synthesized through one-pot reaction of aromatic ketones and 2-aminopyrimidine. These reactions were performed in the presence of I2 and DMSO. Derivatives of 3-amine compound were reacted with propargyl bromid to yield 2-phenyl-N-(prop-2-yn-1-yl)-N-(pyrimidine-2-yl) derivatives of imidazo/pyrimidine rings. Then, by Mannich reaction, one of 3-secondary amine derivatives (contains NH2 group) (1d) was reacted with different aromatic amines to form Mannich bases. All synthesized compounds were characterized via FT-IR spectroscopy, some of which were characterized by 1H-NMR spectroscopy. Other derivatives of imidazo(1,2-a)pyrimidine(1c,2c,2d,3a) were evaluated for anti-oxidant activity and one of these derivatives (2d) was tested for cytotoxic activity against breast cancer using MTT assay.

Graphical Abstract

Anti-cancer and antioxidant activities of some new synthesized 3-secondary amine derivatives bearing imidazo [1,2-A] pyrimidine

Keywords

Main Subjects

[1]  R. Goel, V. Luxami, K. Paul, RSC Adv., 2015, 5, 81608-81637.‏ [crossref], [Google Scholar], [Publisher]
[2]  a) A. Marwaha, J. White, F. El_Mazouni, S.A. Creason, S. Kokkonda, F.S. Buckner, P.K. Rathod, J. Med. Chem., 2012, 55, 7425-7436. [crossref], [Google Scholar], [Publisher] b) A. Linton, P. Kang, M. Ornelas, S. Kephart, Q. Hu, M. Pairish, C. Guo, J. Med. Chem., 2011, 54, 7705-7712.‏[crossref], [Google Scholar], [Publisher] c) W. Meng, R.P. Brigance, H.J. Chao, A. Fura, T. Harrity, J. Marcinkeviciene, L.G. Hamann, J. Med. Chem., 2010,  53, 5620-5628.‏ [crossref], [Google Scholar], [Publisher] d) S.P. O’Connor, Y. Wang, L.M. Simpkins, R.P. Brigance, W. Meng, A. Wang, L.G. Hamann, Bioorg. Med. Chem. let., 2010, 20, 6273-6276.‏ [crossref], [Google Scholar], [Publisher] e) K.C. Rupert, J.R. Henry, J.H. Dodd, S.A. Wadsworth, D.E. Cavender, G.C. Olini, J.J. Siekierka, Bioorg. Med. Chem. lett., 2003, 13, 347-350.‏ [crossref], [Google Scholar], [Publisher] f) K. Terashima, , O. Muraoka, M. Ono. Chem. Pharm. Bull.1995, 43, 1985-1991.‏ [crossref], [Google Scholar], [Publisher] g) W.R. Tully, C.R. Gardner, R.J. Gillespie, R. Westwood, J. Med. Chem., 1991, 34, 2060–2067. [crossref], [Google Scholar], [Publisher] h) M. Adib, E. Sheibani, H.R. Bijanzadeh, L.G. Zhu. Tetrahedron, 200864, 10681-10686.‏ [crossref], [Google Scholar], [Publisher]
[3] Y.Y. Xie, Synth. Commun., 200535, 1741-1746.‏ [crossref], [Google Scholar], [Publisher]
[4] L.E. Craig (Mar.12.1975) U.S Patent 2, 785, 133.
[5] A.S. Oganisyan, A.S. Noravyan, I.A. Dzhagatspanyan, I.M. Nazaryan, A.G. Akopyan. Pharm. Chem. J., 200741, 588-590.‏ [crossref], [Google Scholar], [Publisher]
[6] S. Velázquez-Olvera, H. Salgado-Zamora, M. Velázquez-Ponce, E. Campos-Aldrete, A. Reyes-Arellano, C. Pérez-González, Chem. Central J., 20126, 1-9.‏ [crossref], [Google Scholar], [Publisher]
[7] S. Laneri, A. Sacchia, M. Gallitelli, F. Arena, E. Luraschi, E. Abignente, F. Rossi, European J. Med. Chem.1998, 33, 163-170.‏ [crossref], [Google Scholar], [Publisher]
[8] J.P. Zhou, Y.W. Ding, H.B. Zhang, L. Xu, Y. Dai, Chin. Chem. Lett., 2008, 19, 669-672.‏ [crossref], [Google Scholar], [Publisher]
[9]  B. Jismy, M. Akssira, D. Knez, G. Guillaumet, S. Gobec, M. Abarbri, New J. Chem., 2019, 43, 9961-9968.‏ [crossref], [Google Scholar], [Publisher]
[10] Y. Hayashi, Chem. Sci., 2016, 7, 866-880.‏ [crossref], [Google Scholar], [Publisher]
[11] Z. Fei, Y.P. Zhu, M.C. Liu, F.C. Jia, A.X. Wu, Tetrahedron Lett., 2013, 54, 1222-1226.‏ [crossref], [Google Scholar], [Publisher]
[12] K. Lauder, A. Toscani, N. Scalacci, D. Castagnolo, Chem. Rev., 2017, 117, 14091-14200.‏ [crossref], [Google Scholar], [Publisher]
[13] B.M. Nilsson, H.M. Vargas, B. Ringdahl, U. Hacksell, J. Med. Chem., 1992, 35, 285-294.‏ [crossref], [Google Scholar], [Publisher]
[14] K. Hattori, M. Miyata, H. Yamamoto, J. Am. Chem. Soc., 1993, 115, 1151-1152. [crossref], [Google Scholar], [Publisher]
[15] M.A. Huffman, N. Yasuda, A.E. DeCamp, E.J. Grabowski, J. Org. Chem., 1995, 60, 1590-1594.‏ [crossref], [Google Scholar], [Publisher]
[16] D. Ma, T. Han, M. Karimian, N. Abbasi, H. Ghaneialvar, A. Zangeneh, International Journal of Biological Macromolecules, 2020, 165, 767-775.‏ [crossref], [Google Scholar], [Publisher]
[17] N.S. Vatmurge, B.G. Hazra, V.S. Pore, F. Shirazi, P.S. Chavan, M.V. Deshpande, Bioorg. Med. Chem. lett., 2008, 18, 2043-2047.‏ [crossref], [Google Scholar], [Publisher]
[18] M.R. Aouad, Molecules, 2014, 19, 18897-18910.‏ [crossref], [Google Scholar], [Publisher]
[19] M. Jeleń, K. Pluta, M. Zimecki, B. Morak-Młodawska, J. Artym, M. Kocięba, I. Kochanowska, J. Enzy. Inhib. Med. Chem., 2016, 31, 83-88.‏ [crossref], [Google Scholar], [Publisher]
[20]  I.E. Kopka, Z.A. Fataftah, M.W. Rathke, The Journal of Organic Chemistry, 1980, 45, 4616-4622.‏ [crossref], [Google Scholar], [Publisher]
[21] S. Czernecki, J.M. Valéry, A, J. Carbohyd. Chem.,‏ 1990, 9, 767-770. [crossref], [Google Scholar], [Publisher]
[22] Y. Imada, M. Yuasa, I. Nakamura, S.I. Murahashi, J. Org. Chem., 1994, 59, 2282-2284.‏ [crossref], [Google Scholar], [Publisher]
[23] a) D. Enders, U. Reinhold, Tetrahedron: Asym., 19978, 1895-1946.[crossref], [Google Scholar], [Publisher]‏ b) R. Bloch, Chem. Rev., 1998, 98, 1407-1438.‏ [crossref], [Google Scholar], [Publisher]
[24] a) T. Murai, Y. Mutoh, Y. Ohta, M. Murakami. J. Am. Chem. Soc., 2004, 126, 5968-5969.‏[crossref], [Google Scholar], [Publisher] b) C.W. Ryan, C. Ainsworth, J. Org. Chem., 1961, 26(5), 1547-1550.[crossref], [Google Scholar], [Publisher]‏ c) M.E. Jung, A. Huang, Org. lett., 2000, 2, 2659-2661.‏ [crossref], [Google Scholar], [Publisher]
[25] Y. Liu, Y. Dang, D. Yin, L. Yang, Q. Zou, Res. Chem. Intermed.2019, 45, 4907-4926.‏ [crossref], [Google Scholar], [Publisher]
[26] S.A. Pishawikar, H.N. More, Arabian J. Chem., 2017, 10, S2714-S2722.‏ [crossref], [Google Scholar], [Publisher]
[27] Y. Liu, Q. WU, D. Yin, D.Y. Li, Chin. J. Org. Chem., 201636, 927-938.‏ [crossref], [Google Scholar], [Publisher]
[28] A. Idhayadhulla, R.S. Kumar, A.J.A. Nasser, J. Selvin, A. Manilal, Arabian J. Chem., 20147, 994-999.‏ [crossref], [Google Scholar], [Publisher]
[29] D.H. Park, J. Venkatesan, S.K. Kim, V. Ramkumar, P. Parthiban, Bioorg. Med. Chem. Lett., 2012, 22, 6362-6367.‏ [crossref], [Google Scholar], [Publisher]
[30] A.N. Vereshchagin, K.A. Karpenko, M.N. Elinson, A.S. Goloveshkin, I.E. Ushakov, M. P. Egorov, Res. Chem. Intermed., 2018, 44, 5623-5634.‏ [crossref], [Google Scholar], [Publisher]