Document Type : Original Research Article

Authors

1 Department of Chemistry, College of Science for Women, Baghdad University, Baghdad, Iraq

2 Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq

Abstract

Diabetes mellitus (DM) is a complicated and varied metabolic disorder characterized by high blood glucose levels. Coronary heart disease (CHD), also known as ischemic heart disease or coronary artery disease, is a common term for the buildup of a waxy substance, called plaque, in the heart's arteries, resulting in the failure of coronary circulation to supply adequate blood circulation to cardiac muscle and surrounding tissue, which can lead to a myocardial infarction (MI). Diabetes mellitus (DM) and coronary heart disease are the most common non-communicable diseases in the world, causing morbidity and mortality due to microvascular and macrovascular complications due to the close relationship between diabetes and vascular complications.

Graphical Abstract

Study of the level of signal-regulated kinase 5 (ERK5) in patients with coronary heart disease with and without diabetes mellitus type 2

Keywords

Main Subjects

[1] F. Sanchis-Gomar‎, C. Perez-Quilis, R. Leischik, A. Lucia, Epidemiology of coronary heart disease and acute coronary syndrome, Ann. Transl. Med., ‎2016‎, 4, 1–12. ‎[Crossref], [Google Scholar], [Publisher]
[2] D.L. Wingard, E. Barrett-Connor, Heart disease and diabetes, Clin. Diabetes, 2003, 21, 10–10. [Google Scholar], [Publisher]
[3] S. Chen, Y. Shen, Y.H. Liu, Y. Dai, Z.M. Wu, X.Q. Wang, C.D. Yang, L.Y. Li, J.M. Liu, L.P. Zhang, W.F. Shen, R. Ji, L. Lu, F.H. Ding, Impact of glycemic control on the association of endothelial dysfunction and coronary artery disease in patients with type 2 diabetes mellitus, Cardiovasc. Diabetol. 2021, 20, 64.
[4] D.H. Wasserman, T.J. Wang, N.J. Brown, The Vasculature in Prediabetes, Circ. Res., 2018, 122, 1135–1150. ‎[Crossref], [Google Scholar], [Publisher]
[5] M. Janjusevic, A. Lucia Fluca, G. Gagno, A. Pierri, L. Padoan, A. Sorrentino, A. Paolo Beltrami, G. Sinagra, A. Aleksova, Old and novel therapeutic approaches in the management of hyperglycemia, an important risk factor for atherosclerosis, Int. J. Mol. Sci., 2022, 23, 2336. ‎[Crossref], [Google Scholar], [Publisher]
[6] J. Wolf, S. Rose-John, C. Garbers, Interleukin-6 and its receptors: A highly regulated and dynamic system, Cytokine, 2014, 70, 11–20. ‎[Crossref], [Google Scholar], [Publisher]
[7] J. Moriya, Critical roles of inflammation in atherosclerosis, J. Cardiol., 2019, 73, 22–27. ‎[Crossref], [Google Scholar], [Publisher]
[8] M. Monti, J. Celli, F. Missale, F. Cersosimo, M. Russo, E. Belloni, A. Di Matteo, S. Lonardi, W. Vermi, C. Ghigna, E. Giurisato, Clinical significance and regulation of ERK5 expression and function in cancer, Cancers, 2022, 14, 348. ‎[Crossref], [Google Scholar], [Publisher]
[9] S.J. Cook, P.A. Lochhead, ERK5 signalling and resistance to ERK1/2 pathway therapeutics: The path less travelled? Front Cell Dev. Biol., ‎2022, 10, 1–13. ‎[Crossref], [Google Scholar], [Publisher]
[10] D. Salas-Lloret, R. González-Prieto, Insights in post-translational modifications: ubiquitin and SUMO, Int. J. Mol. Sci., 2022, 23. ‎[Crossref], [Google Scholar], [Publisher]
[11] V. Mlakar, E. Morel, S.J. Mlakar, M. Ansari, F. Gumy-Pause, A review of the biological and clinical implications of RAS-MAPK pathway alterations in neuroblastoma, J. Exp. Clin. Cancer Res., 2021, 40, 1–16. ‎[Crossref], [Google Scholar], [Publisher]
[12] B. Stecca, E. Rovida, Impact of ERK5 on the hallmarks of cancer, Int. J. Mol. Sci., 2019, 20, 1426. ‎[Crossref], [Google Scholar], [Publisher]‎
[13] S. Cristea, G.L. Coles, D. Hornburg, M. Gershkovitz, J. Arand, S. Cao, T. Sen, S.C. Williamson, J.W. Kim, A.P. Drainas, A. He, L. Le Cam, L.A. Byers, M.P. Snyder, K. Contrepois, J. Sage, The MEK5–ERK5 kinase axis controls lipid metabolism in small-cell lung cancer, Res., 2020, 80, 1293–1303. ‎[Crossref], [Google Scholar], [Publisher]
[14] D. Mac Grogan, J. Münch, J.L. de la Pompa, Notch and interacting signalling pathways in cardiac development, disease, and regeneration, Nat. Rev. Cardiol., 2018, 15, 685–704. ‎[Crossref], [Google Scholar], [Publisher]
[15] A. Qin, J. Tan, S. Wang, L. Dong, Z. Jiang, D. Yang, H. Zhou, X. Zhou, Y. Tang, W. Qin, Triglyceride–glucose index may predict renal survival in patients with IgA nephropathy, J. Clin. Med., 2022, 11, 5176.] ‎[Crossref], [Google Scholar], [Publisher]
[16] D. Zhu, H.F. Chung, J.A. Dobson, N. Pandeya, G.G. Giles, F. Bruinsma, E.J. Brunner, D. Kuh, R. Hardy, N.E. Avis, E.B. Gold, C.A. Derby, K.A. Matthews, J.E. Cade, D.C. Greenwood, P. Demakakos, D.E. Brown, L.L. Sievert, D. Anderson, K. Hayashi, J.S. Lee, H. Mizunuma, T. Tillin, M.K. Simonsen, H.O. Adami, E. Weiderpass,G.D. Mishra, Age at natural menopause and risk of incident cardiovascular disease: a pooled analysis of individual patient data, Lancet Public Health, 2019, 4, e553–e564. ‎[Crossref], [Google Scholar], [Publisher]
[17] A.P. Arnold, L.A. Cassis, M. Eghbali, K. Reue, K. Sandberg, Sex hormones and sex chromosomes cause sex differences in the development of cardiovascular diseases, Arterioscler Thromb Vasc Biol., 2017, 37, 746–756. ‎[Crossref], [Google Scholar], [Publisher]
[18] R. Hajar, Risk factors for coronary artery disease: historical perspectives, Heart Views, 2017, 18, 109–114. ‎[Crossref], [Google Scholar], [Publisher]
[19] M. Hedayatnia, Z.Asadi, R. Zare-Feyzabadi, M. Yaghooti-Khorasani, H. Ghazizadeh, R. Ghaffarian-Zirak, A. Nosrati-Tirkani, M. Mohammadi-Bajgiran, M. Rohban, F. Sadabadi, H.R. Rahimi, M. Ghalandari, M.S. Ghaffari, A. Yousefi, Elnaz Pouresmaeili, M.R. Besharatlou, M. Moohebati, G.A. Ferns, H. Esmaily, M. Ghayour-Mobarhan, Dyslipidemia and cardiovascular disease risk among the MASHAD study population, Lipids Health Dis., 2020, 19, 42.
[20] M. Kumari, V. Kumar, S.K. Verma, R.K. Mahli, Evaluation of lipid profile and glycated haemoglobin in type 2 diabetic patients: A retrospective study, Int. J. Health Sci., 2022, 6, 4372–4383. ‎[Crossref], [Google Scholar], [Publisher]
[21] M. Rosa, A. Chignon, Z. Li , C. Boulanger, B.J. Arsenault, Y. Bossé, S. Thériault, P. Mathieu, A Mendelian randomization study of IL6 signaling in cardiovascular diseases, immune-related disorders and longevity,  npjGenomic Medicine, 2019, 4, 23. ‎[Crossref], [Google Scholar], [Publisher]
[22] E. Rullman, M. Melin, M. Mandic, A. Gonon, R. FernandezGonzalo, T. Gustafsson, Circulatory factors associated with function and prognosis in patients with severe heart failure, Clin. Res. Cardiol., ‎2020, 109, 655–672. ‎[Crossref], [Google Scholar], [Publisher]
[23] M. Akbari, V. Hassan-Zadeh, IL-6 signalling pathways and the development of type 2 diabetes, Inflammopharmacology, 2018, 26, 685–698.‎[Crossref], [Google Scholar], [Publisher]
[24] J. Wang, W.N. Wang, S.B. Xu, H. Wu, B. Dai, D.D. Jian, M. Yang, Y.-T. Wu, Q. Feng, J.-H. Zhu, L. Zhang, L. Zhang, MicroRNA-214-3p: A link between autophagy and endothelial cell dysfunction in atherosclerosis, Acta Physiol., 2018, 222, e12973. ‎[Crossref], [Google Scholar], [Publisher]
[25] X. Yang, G. Yin, H. Sun, G. Zhao, Physcion 8-O-β-glucopyranoside alleviates oxidized low-density lipoprotein-induced human umbilical vein endothelial cell injury by inducing autophagy through AMPK/SIRT1 signaling[RETRACTED], J Cardiovasc Pharmacol., 2019, 74, 53–61. ‎[Crossref], [Google Scholar], [Publisher]
[26] R. Wang, M. Wang, J. Ye, G. Sun, X. Sun, Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review), Int. J. Mol. Med., 2021, 47, 65–76. ‎[Crossref], [Google Scholar], [Publisher]
[27] M.A. Gimbrone, G. Garcia-Cardena, Endothelial cell dysfunction and the pathobiology of atherosclerosis, Circ. Res., 2016, 118, 620–636. ‎[Crossref], [Google Scholar], [Publisher]
[28] J.J. Tsai, J.H. Chen, C.H. Chen, J.G. Chung, F.T. Hsu, Apoptosis induction and ERK/NF-κB inactivation are associated with magnolol-inhibited tumor progression in hepatocellular carcinoma in vivo, Environ. Toxicol., 2020, 35, 167–175. ‎[Crossref], [Google Scholar], [Publisher]
[29] M.Y. Koteliukh, Relationship between parameters of adipokine and lipid profiles in patients with acute myocardial infarction and type 2 diabetes mellitus, Modern Medicine, Pharmacy and Psychological Health, 2022, 1, 70-74. ‎[Crossref], [Google Scholar], [Publisher]
[30] S. Al-Shaheeb, H.K. Hashim, A.K. Mohammed, H.A. Almashhadani, A. Al Fandi, Assessment of lipid profile with HbA1c in type 2 diabetic Iraqi patients, Revista Bionatura.,  2022, 7, 29. ‎[Crossref], [Google Scholar], [Publisher]‎
[31] C.M. Otto, Heartbeat: Focus on the Fontan patient, Heart., 2016, 102, 1142–1149. ‎[Crossref], [Google Scholar], [Publisher]‎
[32] N. Oudah, Nife Purification and Characterization of arginase and measuring the nitric oxide levels in Iraqi diabetes mellitus type II patients, PhD               dissertation, Baghdad University 2018.
[33] Q. Zhao, J.A. Laukkanen, Q. Li, G. Li, Body mass index is associated with type 2 diabetes mellitus in Chinese elderly, Clin Interv Aging., 2017, 12, 745–752. ‎[Crossref], [Google Scholar], [Publisher]‎
[34] A.A. Das, D. Chakravarty, D. Bhunia, S. Ghosh, P.C. Mandal, K.N. Siddiqui, A. Bandyopadhyay, Elevated level of circulatory sTLT1 induces inflammation through SYK/MEK/ERK signalling in coronary artery disease, Clinical Science, 2019, 133, 2283–2299. ‎[Crossref], [Google Scholar], [Publisher]‎
[35] L.L. Lehrskov, R.H. Christensen, The role of interleukin-6 in glucose homeostasis and lipid metabolism, Seminars in Immunopathology, 2019, 41, 491–499. ‎[Crossref], [Google Scholar], [Publisher]
 [36] F.F. Kreiner , J.M. Kraaijenhof, M. von Herrath, G.K. Kornelis Hovingh, B. Johan von Scholten, Interleukin 6 in diabetes, chronic kidney disease, and cardiovascular disease: mechanisms and therapeutic perspectives, Expert Rev. Clin. Immunol., 2022, 18, 377–389. ‎[Crossref], [Google Scholar], [Publisher]
[37] F. Zatterale, M. Longo, J. Naderi, G.A. Raciti, A. Desiderio, C. Miele, F. Beguinot, Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes, Front Physiol., 2019, 10, 1607. [Crossref], [Google Scholar], [Publisher]
[38] O. Schultz, F. Oberhauser, J. Saech, A. Rubbert-Roth, M. Hahn, W. Krone, M. Laudes, Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (A) levels in human subjects with rheumatoid diseases, PloS one., 2010, 5, e14328. [Crossref], [Google Scholar], [Publisher]