[1] A. Al-Mulla, A Review: Biological Importance of Heterocyclic Compounds,
Der. Pharma. Chemica.,
2017,
9, 141–147. [
Google Scholar], [
Publisher]
[2] A. Ansari, A. Ali, M. Asif, Shamsuzzaman, Review: biologically active pyrazole derivatives,
New J. Chem.,
2016,
41, 16–41. [
Crossref], [
Google Scholar], [
Publisher]
[3] Y. Ju, R.S. Varma, Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives,
J. Org. Chem.,
2006,
71, 135–141. [
Crossref], [
Google Scholar], [
Publisher]
[4] D. Zárate-Zárate, R. Aguilar, R.I. Hernández-Benitez, E.M. Labarrios, F. Delgado, J. Tamariz, Synthesis of α-ketols by functionalization of captodative alkenes and divergent preparation of heterocycles and natural products,
Tetrahedron,
2015,
71, 6961–6978. [
Crossref], [
Google Scholar], [
Publisher]
[5] E. Zarenezhad, M. Farjam, A. Iraji, Synthesis and biological activity of pyrimidines-containing hybrids: Focusing on pharmacological application,
J. Mol. Struct.,
2021,
1230, 129833. [
Crossref], [
Google Scholar], [
Publisher]
[6] B. Eftekhari-Sis, M. Zirak, A. Akbari, Arylglyoxals in Synthesis of Heterocyclic Compounds,
Chem. Rev.,
2013,
113, 2958–3043. [
Crossref], [
Google Scholar], [
Publisher]
[7] K. Didehban, E. Vessally, M. Salary, L. Edjlali, M. Babazadeh, Synthesis of a variety of key medicinal heterocyclic compounds via chemical fixation of CO
2 onto o-alkynylaniline derivatives,
J. CO2 Util.,
2018,
23, 42–50. [
Crossref], [
Google Scholar], [
Publisher]
[8] I.M. Lagoja, Pyrimidine as constituent of natural biologically active compounds,
Chem. Biodivers.,
2005,
2, 1–50. [
Crossref], [
Google Scholar], [
Publisher]
[9] P.N. Kalaria, S.C. Karad, D.K. Raval, A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery,
Eur. J. Med. Chem.,
2018,
158, 917–936. [
Crossref], [
Google Scholar], [
Publisher]
[10] I.L. Nikonov, D.S. Kopchuk, I.S. Kovalev, G.V. Zyryanov, A.F. Khasanov, P.A. Slepukhin, V.L. Rusinov, O.N. Chupakhin, Benzyne-mediated rearrangement of 3-(2-pyridyl)-1,2,4-triazines into 10-(1H-1,2,3-triazol-1-yl)pyrido[1,2-a]indoles,
Tetrahedron Lett.,
2013,
54, 6427–6429. [
Crossref], [
Google Scholar], [
Publisher]
[11] D. Yadagiri, M. Rivas, V. Gevorgyan, Denitrogenative transformations of pyridotriazoles and related compounds: synthesis of N-containing heterocyclic compounds and beyond,
J. Org. Chem.,
2020,
85, 11030–11046. [
Crossref], [
Google Scholar], [
Publisher]
[12] G.B. Kauffman, S.H. Chooljian, Friedrich wöhler (1800–1882), on the bicentennial of his birth,
Chem. Educ.,
2001,
6, 121–133. [
Crossref], [
Google Scholar], [
Publisher]
[13] G. Guillena, D.J. Ramon, M. Yus, Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles,
Chem. Rev.,
2010,
110, 1611–1641. [
Crossref], [
Google Scholar], [
Publisher]
[14] Z. Du, X. Wei, W. Zhang, Y. Zhang, Q. Xue, Catalyst-free and highly selective N,N-diallylation of anilines in aqueous phase,
J. Chem.,
2013,
2013, 1–6. [
Crossref], [
Google Scholar], [
Publisher]
[15] T.A. Ramirez, B. Zhao, Y. Shi, Recent advances in transition metal-catalyzed sp
3 C–H amination adjacent to double bonds and carbonyl groups,
Chem. Soc. Rev.,
2012,
41, 931–942. [
Crossref], [
Google Scholar], [
Publisher]
[16] R.N. Salvatore, C.H. Yoon, K.W. Jung, Synthesis of secondary amines,
Tetrahedron,
2001,
57, 7785–7812. [
Google Scholar], [
Publisher]
[17] M. Selva, P. Tundo, A. Perosa, Reaction of primary aromatic amines with alkyl carbonates over NaY faujasite: A convenient and selective access to mono-N-alkyl anilines,
J. Org. Chem.,
2001,
66, 677–680. [
Crossref], [
Google Scholar], [
Publisher]
[18] C. Chiappe, D. Pieraccini, Direct mono-N-alkylation of amines in ionic liquids: chemoselectivity and reactivity,
Green Chem.,
2003,
5, 193–197. [
Crossref], [
Google Scholar], [
Publisher]
[19] C. Feng, Y. Liu, S. Peng, Q. Shuai, G. Deng, C.-J. Li, Ruthenium-catalyzed tertiary amine formation from nitroarenes and alcohols,
Org. Lett.,
2010,
12, 4888–4891. [
Crossref], [
Google Scholar], [
Publisher]
[20] K. Fujita, Y. Enoki, R. Yamaguchi, Cp∗Ir-catalyzed N-alkylation of amines with alcohols. A versatile and atom economical method for the synthesis of amines,
Tetrahedron,
2008,
64, 1943–1954. [
Crossref], [
Google Scholar], [
Publisher]
[21] S. Michlik, R. Kempe, New iridium catalysts for the efficient alkylation of anilines by alcohols under mild conditions,
Chem. Eur. J.,
2010,
16, 13193–13198. [
Crossref], [
Google Scholar], [
Publisher]
[22] S.C. Yang, Y.C. Tsai, Regio- and stereoselectivity in palladium(0)-catalyzed allylation of anilines using allylic alcohols directly,
Organometallics,
2001,
20, 763–770. [
Crossref], [
Google Scholar], [
Publisher]
[23] A. Leyva-Perez, J.R. Cabrero-Antonino, A. Cantin, A. Corma, Gold(I) catalyzes the intermolecular hydroamination of alkynes with imines and produces α,α′,N-triarylbisenamines: studies on their use as intermediates in synthesis,
J. Org. Chem.,
2010,
75, 7769–7780. [
Crossref], [
Google Scholar], [
Publisher]
[24] L. He, X.B. Lou, J. Ni, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, Efficient and clean gold-catalyzed one-pot selective N-alkylation of amines with alcohols,
Chem. Eur. J.,
2010,
16, 13965–13969. [
Crossref], [
Google Scholar], [
Publisher]
[25] G. Mora, B. Deschamps, S. van Zutphen, X. F. Le Goff, L. Ricard, P. Le Floch, Xanthene-phosphole ligands: synthesis, coordination chemistry, and activity in the palladium-catalyzed amine allylation,
Organometallics,
2007,
26, 1846–1855. [
Crossref], [
Google Scholar], [
Publisher]
[26] L.L. Hill, J.L. Crowell, S.L. Tutwiler, N.L. Massie, C.C. Hines, S.T. Griffin, R.D. Rogers, K.H. Shaughnessy, G.A. Grasa†, C.C.C.J. Seechurn, H. Li, T.J. Colacot, J. Chou, C.J. Woltermann, Synthesis and X-ray structure determination of highly active Pd(II), Pd(I), and Pd(0) complexes of Di(tert-butyl)neopentylphosphine (DTBNpP) in the arylation of amines and ketones,
J. Org. Chem.,
2010,
75, 6477–6488. [
Crossref], [
Google Scholar], [
Publisher]
[27] Q. Zou, C. Wang, J. Smith, D. Xue, J. Xiao, Alkylation of amines with alcohols and amines by a single catalyst under mild conditions,
Chem.-A Eur. J.,
2015,
21, 9656–9661. [
Crossref], [
Google Scholar], [
Publisher]
[28] M.H. Ahmed, M.A. EI-Hashash, M.I. Marzouk, A.M. EI-Naggar, Synthesis and antitumor activity of some nitrogen heterocycles bearing pyrimidine moiety,
J. Heterocycl.,
2020,
57, 3412-3427. [
Crossref], [
Google Scholar], [
Publisher]
[29] A. Allahresani, M.A. Nasseri, A. Nakhaei, S. Aghajani, Co(III)@Fe
3O
4@SiO
2 salen complex as a highly selective and recoverable magnetic nanocatalyst for the oxidation of sulfides and benzylic alcohols,
Eurasian Chem. Commun.,
2019,
1, 153–169. [
Crossref], [
Google Scholar], [
Publisher]
[30] M. Khalid, A. Ali, S. Haq, M.N. Tahir, J. Iqbal, A.A.C. Braga, M. Ashfaq, S.U.H. Akhtar, O-4-Acetylamino-benzenesulfonylated pyrimidine derivatives: synthesis, SC-XRD, DFT analysis and electronic behaviour investigation,
J. Mol. Struct.,
2021,
1224, 129308. [
Crossref], [
Google Scholar], [
Publisher]
[31] K.R. Gari Divya, G. Lakshmi Teja, G. Yamini, A. Padmaja, V. Padmavathi, Synthesis of amido sulfonamido heteroaromatics under ultrasonication and their antimicrobial activity,
Chem. Biodivers.,
2019,
16, e1900291. [
Crossref], [
Google Scholar], [
Publisher]
[32] E.J. Baron, Maturing into a diagnostic microbiologist for today,
Many Faces, Many Microbes Pers. Reflections Microbiol.,
2000, 107–115. [
Crossref], [
Google Scholar], [
Publisher]
[33] R.R. Neubig, M. Spedding, T. Kenakin, A. Christopoulos, International union of pharmacology committee on receptor nomenclature and drug classification. XXXVIII. update on terms and symbols in quantitative pharmacology,
Pharmacol. Rev.,
2003,
55, 597–606. [
Crossref], [
Google Scholar], [
Publisher]
[34] S.F. Barbuceanu, G. Saramet, G.L. Almajan, C. Draghici, F. Barbuceanu, G. Bancescu, New heterocyclic compounds from 1,2,4-triazole and 1,3,4-thiadiazole class bearing diphenylsulfone moieties. Synthesis, characterization and antimicrobial activity evaluation,
Eur.J. Med. Chem.,
2012,
49, 417-423. [
Crossref], [
Google Scholar], [
Publisher]