[1] P.A. Tsuji, J.A. Canter, L.E. Rosso, Trace minerals and trace elements,
Encyclopedia of Food and Health,
2016, 331–338. [
Crossref], [
Google Scholar], [
Publisher]
[3]
F.H. Nielsen, Trace and ultratrace elements
, Reference Module in Biomedical Sciences,
2014. [
Crossref] [
Publisher]
[5]
M. Zeece, Vitamins and minerals
, Introduction to the Chemistry of Food,
2020, 163–212. [
Crossref], [
Publisher]
[6]
J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans
, Heliyon,
2020,
6, e04691. [
Crossref], [
Google Scholar], [
Publisher]
[7]
W. Mihatsch, M. Fewtrell, O. Goulet, C. Molgaard, J.C. Picaud, T. Senterre, ... W. Yan, ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Calcium, phosphorus and magnesium
, Clin. Nutr.,
2018,
37, 2360–2365. [
Crossref], [
Google Scholar], [
Publisher]
[8]
H.B.D.V. Catharine Ross, Christine L. Taylor, Ann L. Yaktine, Dietary reference intakes for vitamin D and calcium
, Food Nutr. Board,
2018,
356, 1053–1061. [
Crossref], [
Google Scholar], [
Publisher]
[9]
R.M.L. La Rovere, G. Roest, G. Bultynck, J.B. Parys, Intracellular Ca 2+ signaling and Ca 2+ microdomains in the control of cell survival, apoptosis and autophagy,
Cell Calcium,
2016,
60, 74–87. [
Crossref], [
Google Scholar], [
Publisher]
[11]
R. Rizzoli, Hypercalcemia: Other causes than primary hyperparathyroidism,
Encyclopedia of Endocrine Diseases,
2018,
4, 160–167. [
Crossref], [
Google Scholar], [
Publisher]
[12]
S. Ferrè, J.A. Neyra, O.W. Moe, Calcium, phosphate, and magnesium metabolism in chronic kidney disease
, Chronic Renal Disease,
2020, 661–679. [
Crossref], [
Google Scholar], [
Publisher]
[13]
M.K.C. van Goor, J.G.J. Hoenderop, J. van der Wijst, TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6,
Biochim. Biophys. Acta - Mol. Cell Res.,
2017,
1864, 883–893. [
Crossref], [
Google Scholar], [
Publisher]
[14]
J.B. Peng, Y. Suzuki, G. Gyimesi, M.A. Hediger, TRPV5 and TRPV6 calcium-selective channels,
Calcium Entry Channels in Non-Excitable Cells, CRC Press/Taylor & Francis,
2018. [
Google Scholar], [
Publisher]
[15]
M. Cozzolino, F. Elli, P. Ciceri, E. Ottaviano, F. Conte, Calcium and phosphate physiology,
Critical Care Nephrology: Third Edition,
2017, 345–349. [
Crossref], [
Publisher]
[16] L.A. Negrea, Hypocalcemia and hypercalcemia
, Nephrology Secrets,
2019, 526–531. [
Crossref]
[17] C. Antwi-Boasiako, Y.A. Kusi-Mensah, C. Hayfron-Benjamin, R. Aryee, G.B. Dankwah, L.A. Kwawukume, E.O. Darkwa, Total serum magnesium levels and calcium-to-magnesium ratio in sickle cell disease,
Med.,
2019,
55, 1–8. [
Crossref], [
Google Scholar], [
Publisher]
[18] I. Aslan, D. Canatan, N. Balta, G. Kacar, C. Dorak, A. Ozsancak, N. Oguz, R. Cosan, Bone mineral density in thalassemia major patients from Antalya, Turkey,
Int. J. Endocrinol.,
2012,
2012, 1–4. [
Crossref], [
Google Scholar], [
Publisher]
[19] I. Aslan, D. Canatan, N. Balta, G. Kacar, C. Dorak, A. Ozsancak, N. Oguz, R. Cosan, Bone mineral density in thalassemia major patients from Antalya, Turkey,
Int. J. Endocrinol.,
2012,
2012, Article ID 573298. [
Crossref], [
Google Scholar], [
Publisher]
[20] Q.R. Lahhob, N.Y. Mohammed, H.J. Abbas, Study of some minerals and trace elements levels in patients with sickle cell anemia and sickle cell anemiathalassemia in South of Iraq,
Biochem. Cell. Arch.,
2021,
21, 1091–1095. [
Google Scholar], [
Publisher]
[22] L. McAlister, P. Pugh, L. Greenbaum, D. Haffner, L. Rees, C. Anderson, A. Desloovere, C. Nelms, M. Oosterveld, F. Paglialonga, N. Polderman, L. Qizalbash, J. Renken-Terhaerdt, J. Tuokkola, B. Warady, J.V. Walle, V. Shaw, R. Shroff, The dietary management of calcium and phosphate in children with CKD stages 2-5 and on dialysis—clinical practice recommendation from the pediatric renal nutrition taskforce
. Pediatr. Nephrol.,
2020,
35, 501–518. [
Crossref], [
Google Scholar], [
Publisher]
[23] C.A. Wagner, N. Hernando, I.C. Forster, J. Biber, The SLC34 family of sodium-dependent phosphate transporters,
Pflugers Arch. Eur. J. Physiol.,
2014,
466, 139–153. [
Crossref], [
Google Scholar], [
Publisher]
[24] N. Hernando, C.A. Renal, Mechanisms and regulation of intestinal phosphate absorption,
Comprehensive Physiology,
2018,
8, 1065–1090. [
Crossref], [
Google Scholar], [
Publisher]
[25] J. Blaine, M. Chonchol, M. Levi, Renal control of calcium, phosphate, and magnesium homeostasis,
Clin. J. Am. Soc. Nephrol.,
2015,
10, 1257–1272. [
Crossref], [
Google Scholar], [
Publisher]
[26] M. Christov, H. Jüppner, Phosphate homeostasis disorders,
Best Pract. Res. Clin. Endocrinol. Metab.,
2018,
32, 685–706. [
Crossref], [
Google Scholar], [
Publisher]
[27] J.M. Forero-Delgadillo, D. Cleves, V. Ochoa, H. Londoño-Correa, J.M. Restrepo, J.A. Nastasi-Catanese, H. Pachajoa, PHEX gene mutation in a patient with X-linked hypophosphatemic rickets in a developing country
, Appl. Clin. Genet.,
2020,
13, 57–62. [
Crossref], [
Google Scholar], [
Publisher
[28] J. Bacchetta, J. Bernardor, C. Garnier, C. Naud, B. Ranchin, Hyperphosphatemia and chronic kidney disease: A major daily concern both in adults and in children.
Calcif. Tissue Int.,
2020, 1–12. [
Crossref], [
Google Scholar], [
Publisher]
[30] S. Shah, Assessment of serum calcium and phosphorus levels among transfusion-dependent beta thalassemia major patients on chelation therapy,
J. Postgrad. Med. Inst.,
2015,
29, 168–171. [
Google Scholar], [
Publisher]
[31] O. Oladipo, E. Temiye, V. Ezeaka, P. Obomanu, Serum magnesium, phosphate and calcium in Nigerian children with sickle cell disease,
West Afr. J. Med.,
2005,
24, 120–123. [
Crossref], [
Google Scholar], [
Publisher]
[32] Q.R. Lahhob, N.Y. Mohammed, H.J. Abbas, Investigation of some trace elements levels & antioxidants in patients with thalassemia major and sickle cell anemia thalassemia in South of Iraq,
Indian J. Forensic Med. Toxicol.,
2021,
21, 1091–1095. [
Crossref], [
Google Scholar], [
Publisher]
[33] A.R. Vincente, G.A. Manganaris, C.M. Ortiz, G.O. Sozzi, C.H. Crisosto, Nutritional quality of fruits and vegetables,
Postharvest Handling: A Systems Approach,
2014, 69–122. [
Crossref], [
Google Scholar], [
Publisher]
[34] J.P. Schuchardt, A. Hahn, Intestinal absorption and factors influencing bioavailability of magnesium- An update.
Curr. Nutr. Food Sci.,
2017,
13, 260–278. [
Crossref], [
Google Scholar], [
Publisher]
[35] K.P.S.M. Konrad, Magnesium Homeostasis
. Principles of Bone Biology,
2020, 487–513. [
Crossref]
[37] A. Mohammed Nawi, S.F. Chin, R. Jamal, Simultaneous analysis of 25 trace elements in micro volume of human serum by inductively coupled plasma mass spectrometry (ICP-MS),
Pract. Lab. Med.,
2020,
18, e00142. [
Crossref], [
Google Scholar], [
Publisher]
[38] Shah, R. Verma, J. M. Oleske, A. Scolpino, J.D. Bogden, Essential trace elements and progression and management of HIV infection.
Nutr. Res.,
2019,
71, 21–29. [
Crossref], [
Google Scholar], [
Publisher]
[40] R. Collings, L.J. Harvey, L. Hooper, R. Hurst, T.J. Brown, J. Ansett, M. King, S.J. Fairweather-Tait, The absorption of iron from whole diets: a systematic review,
Am. J. Clin. Nutr.,
2013,
98, 65–81. [
Crossref], [
Google Scholar], [
Publisher]
[42] P. Kondaiah, P.S. Yaduvanshi, P.A. Sharp, R. Pullakhandam, Iron and zinc homeostasis and interactions: does enteric zinc excretion cross-talk with intestinal iron absorption,
Nutrients,
2019,
11, 1885. [
Crossref], [
Google Scholar], [
Publisher]
[43] J.P. Kothadia, R. Arju, M. Kaminski, A. Mahmud, J. Chow, S. Giashuddin, Gastric siderosis: An under-recognized and rare clinical entity
, SAGE Open Med.,
2016, 1–8. [
Crossref], [
Google Scholar], [
Publisher]
[46] V. Jeney, Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss,
Front. Pharmacol.,
2017, 8, 1–11. [
Crossref], [
Google Scholar], [
Publisher]
[47] A. Teli, S. Nibedita, B. Adit
, Zinc and ferritin in haemoglobinopathies: an observational study,
Int. J. Heal. Res. Med. Leg. Pract.,
2019, 5, 14. [
Crossref], [
Google Scholar], [
Publisher]
[48] A.K. Baltaci, K. Yuce, R. Mogulkoc, Zinc Metabolism and Metallothioneins,
Biol. Trace Elem. Res.,
2018,
183, 22–31. [
Crossref], [
Google Scholar], [
Publisher]
[49] T. Kimura, T. Kambe, The Functions of metallothionein and ZIP and ZnT transporters: an overview and perspective,
Int. J. Mol. Sci.,
2016,
17, 336. [
Crossref], [
Google Scholar], [
Publisher]
[50] W. Zhong, Q. Sun, Z. Zhou, Role of zinc in alcoholic liver disease,
Molecular Aspects of Alcohol and Nutrition,
2016, 143–156. [
Crossref], [
Google Scholar], [
Publisher]
[51] D. Kumari, N. Nair, R.S. Bedwal, Dietary zinc deficiency and testicular apoptosis, Handbook of Fertility,
2015, 341–353. [
Crossref], [
Google Scholar], [
Publisher]
[52] A. Şahin, E.Ö. Er, E. Öz, Z.Y. Yıldırmak, S. Bakırdere, Sodium, magnesium, calcium, manganese, iron, copper, and zinc in serums of beta thalassemia major patients,
Biol. Trace Elem. Res.,
2020. [
Crossref], [
Google Scholar], [
Publisher]
[53] P. Kondaiah, P.S. Yaduvanshi, P.A. Sharp, R. Pullakhandam, Iron and zinc homeostasis and interactions: does enteric zinc excretion cross-talk with intestinal iron absorption?
Nutrients,
2019,
11, 1885. [
Crossref], [
Google Scholar], [
Publisher]
[54] J.L. Willoughby, C.N. Bowen, Zinc deficiency and toxicity in pediatric practice,
Curr. Opin. Pediatr.,
2014,
26, 579–584. [
Crossref], [
Google Scholar], [
Publisher]
[55] M. Bost, S. Houdart, M. Oberli, E. Kalonji, J.-F. Huneau, I. Margaritis, Dietary copper and human health: Current evidence and unresolved issues,
J. Trace Elem. Med. Biol.,
2016,
35, 107–115. [
Crossref], [
Google Scholar], [
Publisher]
[56] M. Altarelli, N. Ben-Hamouda, A. Schneider, M.M. Berger, Copper deficiency: causes, manifestations, and treatment
. Nutrition in Clinical Practice,
2019,
34, 504–513. [
Crossref], [
Google Scholar], [
Publisher]
[57] R.J. Cousins, J.P. Liuzzi, Trace metal absorption and transport,
Physiology of the Gastrointestinal Tract,
2018, 1485–1498. [
Crossref], [
Google Scholar], [
Publisher]
[58] A.P. Ingle, P. Paralikar, S. Shende, I. Gupta, J.K. Biswas, L.H. da Silva Martins, M. Rai, Copper in medicine: perspectives and toxicity,
Biomedical Applications of Metals,
2018, 95–112. [
Crossref], [
Google Scholar], [
Publisher]
[59] C.A. Zeid, L. Yi, S.G. Kaler, Menkes disease and other disorders related to ATP7A, Clinical and
Translational Perspectives on WILSON DISEASE,
2019, 439–447. [
Crossref], [
Google Scholar], [
Publisher]
[60] M. Latorre, R. Troncoso, R. Uauy, Biological aspects of copper,
Clinical and Translational Perspectives on WILSON DISEASE,
2019, 25–31. [
Crossref], [
Google Scholar], [
Publisher]
[61] C.B.S. Dangi, M. Kaur, M. Singh, Copper and zinc quotient in haemoglobinopathies,
Biomed. Pharmacol. J.,
2011,
4, 165–173. [
Crossref], [
Google Scholar], [
Publisher]
[63] F.P. Phiri, E.L. Ander, R.M. Lark, E.H. Bailey, B. Chilima, J. Gondwe , E.J.M. Joy, A.A. Kalimbira, J.C. Phuka, P.S. Suchdev, D.R.S. Middleton, E.M. Hamilton, M.J. Watts, S.D. Young, M.R. Broadley, Urine selenium concentration is a useful biomarker for assessing population level selenium status,
Environ. Int.,
2020,
134, 105218. [
Crossref], [
Google Scholar], [
Publisher]
[65] J.O. Hall, Selenium
. Veterinary Toxicology,
2018,
2, 469–477. [
Crossref], [
Publisher]
[66] S.H. Yim, C.B. Clish, V.N. Gladyshev, Selenium deficiency is associated with pro-longevity mechanisms
, Cell Rep.,
2019,
27, 2785-2797.e3. [
Crossref], [
Google Scholar], [
Publisher]
[67] B.O. Idonije, O.I. Iribhogbe, G.R.A. Okogun, Serum trace element levels in sickle cell disease patients in an urban city in Nigeria
, Nat. Sci.,
2011,
9, 67–71. [
Pdf], [
Google Scholar], [
Publisher]
[68] M.M. Hamdy, D.S. Mosallam, A.M. Jamal, W. A. Rabie, Selenium and Vitamin E as antioxidants in chronic hemolytic anemia: Are they deficient? A case-control study in a group of Egyptian children,
J. Adv. Res.,
2015,
6, 1071–1077. [
Crossref], [
Google Scholar], [
Publisher]
[69] Z. Ozturk, G.E. Genc, S. Gumuslu, Minerals in thalassaemia major patients: An overview,
J. Trace Elem. Med. Biol.,
2017,
41, 1–9. [
Crossref], [
Google Scholar], [
Publisher]
[70] G. Bjørklund, M.S. Chartrand, J. Aaseth, Manganese exposure and neurotoxic effects in children
, Environ. Res.,
2017,
155, 380–384. [
Crossref], [
Google Scholar], [
Publisher]
[71] S. Anagianni, K. Tuschl, Genetic Disorders of Manganese Metabolism,
Curr. Neurol. Neurosci. Rep.,
2019,
19, 33. [
Crossref], [
Google Scholar], [
Publisher]
[72] L.J. Juttukonda, E.P. Skaar, Manganese and Nutritional Immunity,
Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals,
2017, 377–387. [
Crossref], [
Google Scholar], [
Publisher]
[73] T. Filippini, S. Cilloni, M. Malavolti, F. Violi, C. Malagoli, M. Tesauro, I. Bottecchi, A. Ferrari, L. Vescovi, M. Vinceti, Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy community,
J. Trace Elem. Med. Biol.,
2018,
50, 508–517. [
Crossref], [
Google Scholar], [
Publisher]
[74] M.K. Choi, Y.J. Bae, Dietary intake and urinary excretion of manganese in Korean healthy adults,
Biol. Trace Elem. Res.,
2019, 1–9. [
Crossref], [
Google Scholar], [
Publisher]
[75] J.P. Gray, N. Suhali-Amacher, S.D. Ray, Metals and metal antagonists,
Side Effects of Drugs Annual,.
2017,
39, 197–208. [
Crossref], [
Google Scholar], [
Publisher]
[76] S. Anagianni, K. Tuschl, Genetic Disorders of Manganese Metabolism,
Curr. Neurol. Neurosci. Rep.,
2019,
19, 33. [
Crossref], [
Google Scholar], [
Publisher]
[77] Z.Q. Wang, Y. Yu, X.H. Zhang, J. Komorowski, Chromium-insulin reduces insulin clearance and enhances insulin signaling by suppressing hepatic insulin-degrading enzyme and proteasome protein expression in KKAy mice
, Front. Endocrinol.,
2014,
5, 1–6. [
Crossref], [
Google Scholar], [
Publisher]
[78] J.B. Vincent, New evidence against chromium as an essential trace element,
J. Nutr.,
2017,
147, 2212–2219. [
Crossref], [
Google Scholar], [
Publisher]
[79] P. Chaubey, V. Suvarna, P. C. Sangave, A.K. Singh, Nutritional management of diabetes—a critical review,
Bioactive Food as Dietary Interventions for Diabetes,
2019, 289–308. [
Crossref], [
Google Scholar], [
Publisher]
[80] J.B. Marcus, Vitamin and mineral basics: the ABCs of healthy foods and beverages, including phytonutrients and functional foods,
Culinary Nutrition,
2013, 279–331. [
Crossref], [
Google Scholar], [
Publisher]
[81] L. Leyssens, B. Vinck, C. Van Der Straeten, F. Wuyts, L. Maes, Cobalt toxicity in humans—a review of the potential sources and systemic health effects,
Toxicology,
2017,
387, 43–56. [
Crossref], [
Google Scholar], [
Publisher]