Document Type : Review Article

Authors

1 Rifai General Hospital, Dhi Qar Health Directorate, Iraqi Ministry of Health, Dhi Qar, Iraq

2 College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq

3 College of Health and Medical Technology, Al-Ayen University, Dhi Qar, Iraq

4 Department of Pharmacology, College of Medicine, University of Thi-Qar, 64001, Iraq

5 Medical Laboratory Technology Dept., College of Health & Medical Technology, Southern Technical University, Basrah, Iraq

6 Al-Zahra’a Medical College, University of Basrah, Basra, Iraq

7 Qalat Sukkar Sector of Primary Health Care, Dhi Qar Health Directorate, Iraqi Ministry of Health, Dhi Qar

8 Faiha Specialized Diabetes, Endocrine and Metabolism Center, University of Basrah, College of Medicine, Basra, Iraq

9 Shatrah General Hospital, Dhi Qar Health Directorate, Iraqi Ministry of Health, Dhi Qar

10 15th Sha'ban Center, Al-Nasiriyah Sector One, Dhi Qar Health Directorate, Iraqi Ministry of Health, Dhi Qar

11 Department of Forensic Sciences, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq

Abstract

Minerals are inorganic substances present in the tissues and fluids of our bodies. They are divided into macro minerals (Ca, Mg, K, Na, Cl, P, and S) and microminerals (I, Zn, Si, Fe, Mn, Cu, Co, Mo, F, Cr, and B), which are important for health and should be consumed according to the needs of the organism. Essential minerals have well-characterized physiological functions within the body. The ability of the body to maintain the minerals content within a certain range despite varying intakes, involves the processes of absorption, storage, and excretion. Inappropriate intakes and/or elevated requirements result from a range of conditions, including disease, malabsorption, pregnancy, and excessive losses, lead to deficiency. A severe deficiency of an essential mineral can only be corrected by supplementation. This review provides some detailed information about dietary sources, biological effects, deficiency, and toxicity of minerals and trace elements.

Graphical Abstract

Mineral and trace elements, dietary sources, biological effects, deficiency, and toxicity: a review

Keywords

Main Subjects

[1] P.A. Tsuji, J.A. Canter, L.E. Rosso, Trace minerals and trace elements,  ‎Encyclopedia of Food and Health, 2016, 331–338. [Crossref], [Google Scholar], [Publisher]
[2] S. Strachan, Trace elements, Curr. Anaesth. Crit. Care, 2010, 21, 44–48. [Crossref], [Google Scholar], [Publisher]‎
[3] F.H. Nielsen, Trace and ultratrace elements, Reference Module in Biomedical Sciences, 2014. [Crossref] [Publisher]
[4] W. Maret, Vitamins and minerals,  Int. J. Mol. Sci., 2016, 17, 1–8, [Crossref], [Google Scholar], [Publisher]
[5] M. Zeece, Vitamins and minerals, Introduction to the Chemistry of Food, ‎‎2020, 163–212. [Crossref], [Publisher]
[6] J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 2020, 6, e04691. [Crossref], [Google Scholar], [Publisher]
[7] W. Mihatsch, M. Fewtrell, O. Goulet, C. Molgaard, J.C. Picaud, T. Senterre, ... W. Yan, ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Calcium, phosphorus and magnesium, Clin. Nutr., 2018, 37, 2360–‎‎2365. [Crossref], [Google Scholar], [Publisher]‎
[8] H.B.D.V. Catharine Ross, Christine L. Taylor, Ann L. Yaktine, Dietary reference intakes for vitamin D and calcium, Food Nutr. Board, 2018, 356, 1053–‎‎1061. [Crossref], [Google Scholar], [Publisher]
[9] R.M.L. La Rovere, G. Roest, G. Bultynck, J.B. Parys, Intracellular Ca 2+ signaling and Ca 2+ microdomains in the control of cell survival, apoptosis and autophagy, Cell Calcium, 2016, 60, 74–87. [Crossref], [Google Scholar], [Publisher]
[10] G. Cormick, J. M. Belizán, Calcium intake and health, Nutrients, 2019, 11, ‎‎1606. [Crossref], [Google Scholar], [Publisher]‎
[11] R. Rizzoli, Hypercalcemia: Other causes than primary hyperparathyroidism, ‎Encyclopedia of Endocrine Diseases, 2018, 4, 160–167. [Crossref], [Google Scholar], [Publisher]
[12] S. Ferrè, J.A. Neyra, O.W. Moe, Calcium, phosphate, and magnesium metabolism in chronic kidney disease, Chronic Renal Disease, 2020, ‎‎661–679. [Crossref], [Google Scholar], [Publisher]
[13] M.K.C. van Goor, J.G.J. Hoenderop, J. van der Wijst, TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6, Biochim. Biophys. Acta - Mol. Cell Res., 2017, 1864, 883–893.‎ [Crossref], [Google Scholar], [Publisher]
[14] J.B. Peng, Y. Suzuki, G. Gyimesi, M.A. Hediger, TRPV5 and TRPV6 calcium-selective channels, Calcium Entry Channels in Non-Excitable Cells, CRC Press/Taylor & Francis, 2018.‎ [Google Scholar], [Publisher]
[15] M. Cozzolino, F. Elli, P. Ciceri, E. Ottaviano, F. Conte, Calcium and phosphate physiology, Critical Care Nephrology: Third Edition, 2017, ‎‎345–349. [Crossref], [Publisher]
‎[16] L.A. Negrea, Hypocalcemia and hypercalcemia, Nephrology Secrets, 2019, 526–531. [Crossref]
[17] C. Antwi-Boasiako, Y.A. Kusi-Mensah, C. Hayfron-Benjamin, R. Aryee, G.B. Dankwah, L.A. Kwawukume, E.O. Darkwa, Total serum magnesium levels and calcium-to-magnesium ratio in sickle cell disease, Med., 2019, 55, 1–8. [Crossref], [Google Scholar], [Publisher]
[18] I. Aslan, D. Canatan, N. Balta, G. Kacar, C. Dorak, A. Ozsancak, N. Oguz, R. Cosan, Bone mineral density in thalassemia major patients from Antalya, Turkey, ‎Int. J. Endocrinol., 2012, 2012, 1–4. [Crossref], [Google Scholar], [Publisher]
[19] I. Aslan, D. Canatan, N. Balta, G. Kacar, C. Dorak, A. Ozsancak, N. Oguz, R. Cosan, Bone mineral density in thalassemia major patients from Antalya, Turkey, Int. J. Endocrinol., 2012, 2012, Article ID 573298. ‎[Crossref], [Google Scholar], [Publisher]
[20] Q.R. Lahhob, N.Y. Mohammed, H.J. Abbas, Study of some minerals and trace elements levels in patients with sickle cell anemia and sickle cell anemiathalassemia in South of Iraq, Biochem. Cell. Arch., 2021, 21, 1091–1095. [Google Scholar], [Publisher]
[21] L.A. DiMeglio, E.A. Imel, Calcium and Phosphate, Basic and Applied Bone Biology, 2019, 257–282. [Crossref], [Google Scholar], [Publisher]
[22] L. McAlister, P. Pugh, L. Greenbaum, D. Haffner, L. Rees, C. Anderson, A. Desloovere, C. Nelms, M. Oosterveld, F. Paglialonga, N. Polderman, L. Qizalbash, J. Renken-Terhaerdt, J. Tuokkola, B. Warady, J.V. Walle, V. Shaw, R. Shroff, The dietary management of calcium and phosphate in children with CKD stages 2-5 and on dialysis—clinical practice recommendation from the pediatric renal nutrition taskforce. Pediatr. Nephrol., 2020, 35, 501–518‎‎.‎ [Crossref], [Google Scholar], [Publisher]
[23] C.A. Wagner, N. Hernando, I.C. Forster, J. Biber, The SLC34 family of sodium-dependent phosphate transporters, Pflugers Arch. Eur. J. Physiol., 2014, 466, ‎‎139–153. [Crossref], [Google Scholar], [Publisher]
[24] N. Hernando, C.A. Renal, Mechanisms and regulation of intestinal phosphate absorption, Comprehensive Physiology, 2018, 8, 1065–1090. [Crossref], [Google Scholar], [Publisher]
[25] J. Blaine, M. Chonchol, M. Levi, Renal control of calcium, phosphate, and magnesium homeostasis, Clin. J. Am. Soc. Nephrol., 2015, 10, 1257–1272.‎ [Crossref], [Google Scholar], [Publisher]
[26] M. Christov, H. Jüppner, Phosphate homeostasis disorders, Best Pract. Res. Clin. Endocrinol. Metab., 2018, 32, 685–706. [Crossref], [Google Scholar], [Publisher]
[27] J.M. Forero-Delgadillo, D. Cleves, V. Ochoa, H. Londoño-Correa, J.M. Restrepo, J.A. Nastasi-Catanese, H. Pachajoa, PHEX gene mutation in a patient with X-linked hypophosphatemic rickets in a developing country,  Appl. Clin. Genet., 2020, 13, 57–62. [Crossref], [Google Scholar], [Publisher
[28] J. Bacchetta, J. Bernardor, C. Garnier, C. Naud, B. Ranchin, Hyperphosphatemia and chronic kidney disease: A major daily concern both in adults and in children. Calcif. Tissue Int., 2020, 1–12.‎ [Crossref], [Google Scholar], [Publisher]
[29] H. Komaba, M. Fukagawa, Phosphate—a poison for humans, Kidney Int., 2016, 90, 753–763.‎ [Crossref], [Google Scholar], [Publisher]
[30] S. Shah, Assessment of serum calcium and phosphorus levels among transfusion-dependent beta thalassemia major patients on chelation therapy, J. Postgrad. Med. Inst., ‎2015, 29, 168–171.‎ [Google Scholar], [Publisher]
[31] O. Oladipo, E. Temiye, V. Ezeaka, P. Obomanu, Serum magnesium, phosphate and calcium in Nigerian children with sickle cell disease, West Afr. J. Med., 2005, 24, ‎‎120–123. [Crossref], [Google Scholar], [Publisher]
[32] Q.R. Lahhob, N.Y. Mohammed, H.J. Abbas, Investigation of some trace elements levels & antioxidants in patients with thalassemia major and sickle cell anemia thalassemia in South of Iraq,  Indian J. Forensic Med. Toxicol., 2021, 21, 1091–1095. [Crossref], [Google Scholar], [Publisher]
[33] A.R. Vincente, G.A. Manganaris, C.M. Ortiz, G.O. Sozzi, C.H. Crisosto, Nutritional quality of fruits and vegetables, Postharvest Handling: A Systems Approach, 2014, 69–122. [Crossref], [Google Scholar], [Publisher]
[34] J.P. Schuchardt, A. Hahn, Intestinal absorption and factors influencing bioavailability of magnesium- An update.  Curr. Nutr. Food Sci., 2017, 13, 260–‎‎278. [Crossref], [Google Scholar], [Publisher]
[35] K.P.S.M. Konrad, Magnesium Homeostasis. Principles of Bone Biology, ‎2020‎‎,‎ 487–513. [Crossref]
[36] A. Davenport, Trace elements in chronic kidney disease, Chronic Renal Disease, ‎ 2020, 703–717.‎ [Crossref], [Google Scholar], [Publisher]
[37] A. Mohammed Nawi, S.F. Chin, R. Jamal, Simultaneous analysis of 25 trace elements in micro volume of human serum by inductively coupled plasma mass spectrometry (ICP-MS), Pract. Lab. Med., 2020, 18, e00142‎‎.‎ [Crossref], [Google Scholar], [Publisher]
[38] Shah, R. Verma, J. M. Oleske, A. Scolpino, J.D. Bogden, Essential trace elements and progression and management of HIV infection. Nutr. Res., 2019, 71, 21–29. [Crossref], [Google Scholar], [Publisher]
[39] S. Rattanachaiwong, P. Singer, Diets and Diet Therapy : Trace Elements., Elsevier, ‎‎2018. [Crossref], [Google Scholar], [Publisher]‎
[40] R. Collings, L.J. Harvey, L. Hooper, R. Hurst, T.J. Brown, J. Ansett, M. King, S.J. Fairweather-Tait, The absorption of iron from whole diets: a systematic review, Am. J. Clin. Nutr., 2013, 98, 65–81. [Crossref], [Google Scholar], [Publisher]‎
[41] H. Drakesmith, E. Nemeth, T. Ganz, Ironing out ferroportin, Cell Metab., 2015, 22, 777–787.‎ [Crossref], [Google Scholar], [Publisher]
[42] P. Kondaiah, P.S. Yaduvanshi, P.A. Sharp, R. Pullakhandam, Iron and zinc homeostasis and interactions: does enteric zinc excretion cross-talk with intestinal iron absorption, Nutrients, 2019, 11, 1885.‎ [Crossref], [Google Scholar], [Publisher]
[43] J.P. Kothadia, R. Arju, M. Kaminski, A. Mahmud, J. Chow, S. Giashuddin, Gastric siderosis: An under-recognized and rare clinical entity, SAGE Open Med., 2016, 1–8. [Crossref], [Google Scholar], [Publisher]
[44] N. V. Bhagavan, C.-E. Ha, Metabolism of iron and heme, J. Med. Biochem., 2015, 511–529.‎ [Crossref], [Google Scholar], [Publisher]
[45] N.C. Andrews, T. Ganz, The molecular basis of iron metabolism, Molecular Hematology 4e, 2019, 92, 161–172. [Crossref], [Google Scholar], [Publisher]
[46] V. Jeney, Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss, Front. Pharmacol., 2017, 8, 1–11‎‎.‎ [Crossref], [Google Scholar], [Publisher]
[47] A. Teli, S. Nibedita, B. Adit, Zinc and ferritin in haemoglobinopathies: an observational study, Int. J. Heal. Res. Med. Leg. Pract., 2019, 5, 14‎‎.‎ [Crossref], [Google Scholar], [Publisher]
[48] A.K. Baltaci, K. Yuce, R. Mogulkoc, Zinc Metabolism and Metallothioneins, Biol. Trace Elem. Res., 2018, 183, 22–31. [Crossref], [Google Scholar], [Publisher]
[49] T. Kimura, T. Kambe, The Functions of metallothionein and ZIP and ZnT transporters: an overview and perspective,  Int. J. Mol. Sci., 2016, 17, 336.‎ [Crossref], [Google Scholar], [Publisher]
[50] W. Zhong, Q. Sun, Z. Zhou, Role of zinc in alcoholic liver disease, Molecular Aspects of Alcohol and Nutrition, 2016, 143–156.‎ [Crossref], [Google Scholar], [Publisher]
[51] D. Kumari, N. Nair, R.S. Bedwal, Dietary zinc deficiency and testicular apoptosis,  Handbook of Fertility, 2015, 341–353. [Crossref], [Google Scholar], [Publisher]
[52] A. Şahin, E.Ö. Er, E. Öz, Z.Y. Yıldırmak, S. Bakırdere, Sodium, magnesium, calcium, manganese, iron, copper, and zinc in serums of beta thalassemia major patients, Biol. Trace Elem. Res., 2020.‎ [Crossref], [Google Scholar], [Publisher]
[53] P. Kondaiah, P.S. Yaduvanshi, P.A. Sharp, R. Pullakhandam, Iron and zinc homeostasis and interactions: does enteric zinc excretion cross-talk with intestinal iron absorption? Nutrients, 2019, 11, 1885. [Crossref], [Google Scholar], [Publisher]‎
[54] J.L. Willoughby, C.N. Bowen, Zinc deficiency and toxicity in pediatric practice, Curr. Opin. Pediatr., 2014, 26, 579–584‎‎. [Crossref], [Google Scholar], [Publisher]‎
[55] M. Bost, S. Houdart, M. Oberli, E. Kalonji, J.-F. Huneau, I. Margaritis, Dietary copper and human health: Current evidence and unresolved issues, J. Trace Elem. Med. Biol., 2016, 35, 107–115.‎ [Crossref], [Google Scholar], [Publisher]
[56] M. Altarelli, N. Ben-Hamouda, A. Schneider, M.M. Berger, Copper deficiency: causes, manifestations, and treatment. Nutrition in Clinical Practice, 2019, 34, ‎‎504–513. [Crossref], [Google Scholar], [Publisher]‎
[57] R.J. Cousins, J.P. Liuzzi, Trace metal absorption and transport, Physiology of the Gastrointestinal Tract, 2018, 1485–1498. [Crossref], [Google Scholar], [Publisher]
[58] A.P. Ingle, P. Paralikar, S. Shende, I. Gupta, J.K. Biswas, L.H. da Silva Martins, M. Rai, Copper in medicine: perspectives and toxicity, Biomedical Applications of Metals, 2018, 95–112. [Crossref], [Google Scholar], [Publisher]
[59] C.A. Zeid, L. Yi, S.G. Kaler, Menkes disease and other disorders related to ATP7A, Clinical and Translational Perspectives on WILSON DISEASE, ‎‎2019, 439–447. [Crossref], [Google Scholar], [Publisher]
[60] M. Latorre, R. Troncoso, R. Uauy, Biological aspects of copper, Clinical and Translational Perspectives on WILSON DISEASE, 2019, 25–31. [Crossref], [Google Scholar], [Publisher]
[61] C.B.S. Dangi, M. Kaur, M. Singh, Copper and zinc quotient in haemoglobinopathies, Biomed. Pharmacol. J., 2011, 4, 165–173. [Crossref], [Google Scholar], [Publisher]
[62] B.A. Zachara, Selenium in complicated pregnancy, A Review. Adv. Clin. Chem., 2018, ‎‎86, 157–178. [Crossref], [Google Scholar], [Publisher]
[63] F.P. Phiri, E.L. Ander, R.M. Lark, E.H. Bailey, B. Chilima, J. Gondwe , E.J.M. Joy, A.A. Kalimbira, J.C. Phuka, P.S. Suchdev, D.R.S. Middleton, E.M. Hamilton, M.J. Watts, S.D. Young, M.R. Broadley, Urine selenium concentration is a useful biomarker for assessing population level selenium status, Environ. Int., 2020, 134, 105218. [Crossref], [Google Scholar], [Publisher]‎
[64] M. Kieliszek, Selenium–fascinating microelement, properties and sources in Food, Molecules, 2019, 24, 1298. [Crossref], [Google Scholar], [Publisher]
[65] J.O. Hall, Selenium. Veterinary Toxicology, 2018, 2, ‎‎469–477. [Crossref], [Publisher]
[66] S.H. Yim, C.B. Clish, V.N. Gladyshev, Selenium deficiency is associated with pro-longevity mechanisms, Cell Rep., 2019, 27, 2785-2797.e3. [Crossref], [Google Scholar], [Publisher]
[67] B.O. Idonije, O.I. Iribhogbe, G.R.A. Okogun, Serum trace element levels in sickle cell disease patients in an urban city in Nigeria, Nat. Sci., 2011, 9, 67–‎‎71.‎ [Pdf], [Google Scholar], [Publisher]
[68] M.M. Hamdy, D.S. Mosallam, A.M. Jamal, W. A. Rabie, Selenium and Vitamin E as antioxidants in chronic hemolytic anemia: Are they deficient? A case-control study in a group of Egyptian children, J. Adv. Res., 2015, 6, 1071–1077. [Crossref], [Google Scholar], [Publisher]
[69] Z. Ozturk, G.E. Genc, S. Gumuslu, Minerals in thalassaemia major patients: An overview, J. Trace Elem. Med. Biol., 2017, 41, 1–9‎‎. [Crossref], [Google Scholar], [Publisher]‎
[70] G. Bjørklund, M.S. Chartrand, J. Aaseth, Manganese exposure and neurotoxic effects in children, Environ. Res., 2017, 155, 380–384‎‎.‎ [Crossref], [Google Scholar], [Publisher]
[71] S. Anagianni, K. Tuschl, Genetic Disorders of Manganese Metabolism, Curr. Neurol. Neurosci. Rep., 2019, 19, 33.‎ [Crossref], [Google Scholar], [Publisher]
[72] L.J. Juttukonda, E.P. Skaar, Manganese and Nutritional Immunity,  Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals, 2017, 377–‎‎387. [Crossref], [Google Scholar], [Publisher]‎
[73] T. Filippini, S. Cilloni, M. Malavolti, F. Violi, C. Malagoli, M. Tesauro, I. Bottecchi, A. Ferrari, L. Vescovi, M. Vinceti, Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy community, J. Trace Elem. Med. Biol., 2018, 50, 508–517.‎ [Crossref], [Google Scholar], [Publisher]
[74] M.K. Choi, Y.J. Bae, Dietary intake and urinary excretion of manganese in Korean healthy adults,  Biol. Trace Elem. Res., ‎2019‎‎,‎ 1–9.‎ [Crossref], [Google Scholar], [Publisher]
[75] J.P. Gray, N. Suhali-Amacher, S.D. Ray, Metals and metal antagonists, Side Effects of Drugs Annual,. 2017, 39, 197–208.‎ [Crossref], [Google Scholar], [Publisher]
[76] S. Anagianni, K. Tuschl, Genetic Disorders of Manganese Metabolism, Curr. Neurol. Neurosci. Rep., 2019, 19, 33. [Crossref], [Google Scholar], [Publisher]
[77] Z.Q. Wang, Y. Yu, X.H. Zhang, J. Komorowski, Chromium-insulin reduces insulin clearance and enhances insulin signaling by suppressing hepatic insulin-degrading enzyme and proteasome protein expression in KKAy mice, Front. Endocrinol., 2014, 5, 1–6. [Crossref], [Google Scholar], [Publisher]
[78] J.B. Vincent, New evidence against chromium as an essential trace element, J. Nutr., ‎2017‎,‎ 147, 2212–2219. [Crossref], [Google Scholar], [Publisher]‎
[79] P. Chaubey, V. Suvarna, P. C. Sangave, A.K. Singh, Nutritional management of diabetes—a critical review, Bioactive Food as Dietary Interventions for Diabetes, ‎‎2019, 289–308. ‎[Crossref], [Google Scholar], [Publisher]‎
[80] J.B. Marcus, Vitamin and mineral basics: the ABCs of healthy foods and beverages, including phytonutrients and functional foods,  Culinary Nutrition, 2013, ‎‎279–331.‎ [Crossref], [Google Scholar], [Publisher]
[81] L. Leyssens, B. Vinck, C. Van Der Straeten, F. Wuyts, L. Maes, Cobalt toxicity in humans—a review of the potential sources and systemic health effects, Toxicology, ‎‎‎2017‎‎, ‎387, 43–56. [Crossref], [Google Scholar], [Publisher]‎
[82] D. Lison, Cobalt, Handbook on the Toxicology of Metals, 2015, 1, 743–763. [Crossref], [Google Scholar], [Publisher]