Document Type : Original Research Article

Authors

1 Department of Basic Science, Maragheh University of Medical Science, Maragheh, Iran

2 bDepartment of Microbiology, Faculty of Basic Science, Islamic Azad University of Urmia Branch, Urmia, Iran

3 Department of Horticultural Science, Faculty of Agricultural Science, University of Tabriz, Tabriz, Iran

4 Young Researchers and Elites Club, Islamic Azad University, Zahedan Branch, Zahedan, Iran

5 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

6 Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

7 Department of Organic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

8 Laboratory of Dendrimers and Nano-Biopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Abstract

This study aimed to PEGylated cationic nano-niosomes formulation containing curcumin (CUR) for drug delivery to MCF-7 breast cancer cell lines and slow release of encapsulated CUR to reduce drug side effects on other healthy cells and increase drug effect on cancer cells. In this applied/in vitro study, PEGylated cationic nano-niosomes containing curcumin as herbal anticancer drug  in MCF-7 cell line were prepared in laboratory through lipid phase mixing, phosphate buffer addition to a lipid thin film, and the production of nano-niosomes by sonication and dialysis process. Curcumin-containing niosomes were produced using the lipid phase by thin film fabrication method and reduced to a nanometer size by sonication. The average diameter (85.4 nm) of drug-carrying nano-niosomes was determined using a nano-sizer. Our results includes acquisition of technical knowledge of fabricating nano-niosomes containing a herbal bioactive ingredient as a nanosystem with the herbal medicine curcumin, proper loading of curcumin (with anticancer effect) at > 95% inside nano-niosomes with a size of < 100 nm to intensify the effectiveness of this medicine in cancer treatment, and preparation of PEGylated cationic nano-niosomes containing a body-compatible herbal bioactive substance with a slow release curve and good stability in terms of size and surface loading after 2 months of production. The produced curcumin-carrying liposomal nano-carrier has a slow-release curve and body biocompatibility that can be used in preparation of drug delivery systems containing similar hydrophobic drugs as an effective approach in treatment of various cancers, and agriculture, as well as in various pharmaceutical, medical, health, and environmental industries.

Graphical Abstract

PEGylated cationic nano-niosomes formulation containing herbal medicine curcumin for drug delivery to MCF-7 breast cancer cells

Keywords

Main Subjects

‎[1] S. Sultana, N. Munir, Z. Mahmood, M. Riaz, M. Akram, M. Rebezov, N. Kuderinova, Z. Moldabayeva, M.A. Shariati, A. Rauf, K.R.R. Rengasamy, Molecular targets ‎for the management of cancer using Curcuma longa Linn. phytoconstituents: A Review, Biomed Pharmacother., 2021, 135, 111078.‎ [Crossref], [Google Scholar], [Publisher]
‎[2] A. Duvoix, R. Blasius, S. Delhalle, M. Schnekenburger, F. Morceau, E. Henry, M. Dicato, M. Diederich, ‎Chemopreventive and therapeutic effects of curcumin, Cancer Res., 2005, 223, 181-190. ‎ ‎[Crossref], [Google Scholar], [Publisher]
‎[3] Z. Yu, Y. Yan, Y. Lou, Curcuma longa Linn extract suppresses neuronal apoptosis induction ‎by sevoflurane via activation of the ERK1/2 pathway, Trop. J. Pharm. Res., 2021, 20. ‎[Crossref], [Google Scholar], [Publisher]
‎[4] H. Hanifian, S. Yaghmori, A.M. Haghi, M. Nateghpour, B.R. Esboei, L. Farivar, E. Souri, Antimalarial activity of alcoholic extract of curcuma longa and heracleum persicum on ‎cultivated plasmodium falciparum 3D7 strain, Archives of Advances in Biosciences, 2021, ‎‎12, 19-27. ‎[Crossref], [Google Scholar], [Publisher]
‎[5] P. Paradkar, A. Juvekar, M. Barkume, A. Amonkar, J. Joshi, G. Soman, A.D.B. Vaidya, In vitro and in vivo ‎evaluation of a standardized haridra (Curcuma longa Linn) formulation in cervical cancer, J. Ayurveda Integr. Med., 2021,‎ 12, 616-622. [Crossref], [Google Scholar], [Publisher]
‎[6] A.M. Zacaria, K.M.B Ampode, Turmeric (Curcuma longa Linn) as phytogenic dietary ‎supplements for the production performance and egg quality traits of laying Japanese quail, J. Anim. Health Prod., 2021, 9, 285-295. [Crossref], [Google Scholar], [Publisher]
‎[7] N. Suwal, R.K. Subba, P. Paudyal, D.P. Khanal, M. Panthi, N. Suwal, M.A. Nassan, M. Alqarni, G. El-Saber Batiha, N. Koirala, Antimicrobial and ‎antibiofilm potential of Curcuma longa Linn. Rhizome extract against biofilm producing ‎Staphylococcus aureus and Pseudomonas aeruginosa isolates, Cell. Mol. Biol. (Noisy-le-grand)., 2021, 67, 17-23. ‎[Crossref], [Google Scholar], [Publisher]
‎[8] W. Kaewthip, S. Dheeranupattana, P. Junta, L. Shank, Sterile tissue preparation and callus ‎induction of curcuma longa Linn, CMUJ. Nat Sci., 2021, 20, e2021062. [Crossref], [Google Scholar], [Publisher]
‎[9] W.H. Irham, Tamrin, L. Marpaung, Marpongahtun, Morphology of bacterial cellulose-‎Curcuma longa Linn from acetobacter xylinum for wound healing, AIP Conference Proceedings: AIP Publishing LLC. 2021.‎ [Crossref], [Google Scholar], [Publisher]
‎[10] L. Amiri, S. Houshmand, H. Kazemi, G. Moattari, M. Ouni, Synergistic effects of curcumin ‎with other herbal compounds and chemical polymers in the preparation of wound dressings: A ‎systematic review, Eurasian Chem. Commun., 2023, 5, 294-302.‎ [Crossref], [Google Scholar], [Publisher]
‎[11] O. Chandravanshi, K. Meena, K.A. Khan, N. Soni, D. Patidar, Responses of organic manures ‎and inorganic fertilizers on growth, yield and economics of turmeric (Curcuma longa Linn.), ‎J. Medicinal Plants, 2021, 9, 243-247.‎‎ [Crossref], [Google Scholar], [Publisher]
‎[12] H. Aghazadeh, F. Tamaddon, M. Ouni, P. Taheri, T. Sangchooli, Microencapsulation of herbal ‎bioactive drug by ‎ Chlorella Vulgaris microalgae as a nano-‎formulation for drug delivery to cells, Eurasian Chem. Commun.,  2023, 5, 327-334‎‏.‏‎‎ [Crossref], [Google Scholar], [Publisher]
‎[13] H. Aghazadeh, S.M.A. Ebnetorab, N. Shahriari, H. Ghaffari, E. Farmani Gheshlaghi, P. Taheri, Design and production of DNA-based ‎electrochemical and biological biosensors for the detection and measurement of gabapentin ‎medication in clinical specimens, J. Electrochem. Soc., 2022, 169, ‎‎077517.‎ [Crossref], [Google Scholar], [Publisher]
‎[14] A.P. Ranjan, A. Mukerjee, J.K. Vishwanatha, L. Helson, Curcumin-er, a liposomal-PLGA ‎sustained release nanocurcumin for minimizing QT prolongation for cancer therapy, Google ‎Patents, 2015.‎ ‎ [Google Scholar], [Publisher]
‎[15]. H Aghazadeh, P Taheri, S Hassani, T Sangchooli, M Ouni, N. Asghari, Vancomycin ‎prolonged release via PLGA system loaded with drug-containing chitosan nanoparticles as a ‎novel in situ forming drug delivery system, Eurasian Chem. Commun.,  2023, 5, ‎‎392- 403‎ [Crossref], [Google Scholar], [Publisher]
‎[16] Z.M. Buch, J. Joshi, A. Amonkar, A.B. Vaidya, Interventional role of Haridra (Curcuma longa ‎Linn) in cancer, Clin. Cancer Investig. J., 2012, 1, 45.‎ [Crossref], [Google Scholar], [Publisher]
‎[17] H.B. Ruttala, Y.T. Ko, Liposomal co-delivery of curcumin and albumin/paclitaxel nanoparticle ‎for enhanced synergistic antitumor efcacy, Colloids Surf B., 2015, 128, 419–426.‎ [Crossref], [Google Scholar], [Publisher]
‎[18] V. Jaishree, P.D. Gupta, Nanotechnology: a revolution in cancer diagnosis, Indian J. Clin. Biochem., 2012, 27, 214–420.‎ [Crossref], [Google Scholar], [Publisher]
‎[19] A. Eldar-Boock, D. Polyak, A. Scomparin, R. Satchi-Fainaro, Nano-sized polymers and ‎liposomes designed to deliver combination therapy for cancer, Curr. Opin. Biotechnol., 2013, ‎‎24, 682–689.‎ ‎‎ [Crossref], [Google Scholar], [Publisher]
‎[20] Z. Sezgin-Bayindir, N. Yuksel, Investigation of formulation variables and excipient ‎interaction on the production of niosomes, AAPS Pharm. Sci. Tech., 2012, 13, 826–835.‎ [Crossref], [Google Scholar], [Publisher]
‎[21] G.P. Kumar, P. Rajeshwarrao, Nonionic surfactant vesicular systems for efective drug ‎delivery—an overview, Acta Pharm Sinica B., 2011, 1, 208–219‎ [Crossref], [Google Scholar], [Publisher]
‎[22] V. Sharma, S. Anandhakumar, M. Sasidharan, Self-degrading niosomes for encapsulation of ‎hydrophilic and hydrophobic drugs: an efcient carrier for cancer multi-drug delivery. Mater Sci Eng C., 2015, 56, 393–400.‎ [Crossref], [Google Scholar], [Publisher]
‎[23] L. Tavano, R. Muzzalupo, N. Picci, B. de Cindio, Co-encapsulation of lipophilic antioxidants ‎into niosomal carriers: percutaneous permeation studies for cosmeceutical applications, Colloids Surf B Biointerfaces., 2014, 114, 144–149.‎ [Crossref], [Google Scholar], [Publisher]
‎[24] A.Z. Wang, R. Langer, O.C. Farokhzad, Nanoparticle delivery of cancer drugs, Annu. Rev. Med., ‎‎2012, 63, 185–198. [Crossref], [Google Scholar], [Publisher]
‎[25] M. Adel, M. Zahmatkeshan, A. Akbarzadeh, N. Rabiee, S. Ahmadi, P. Keyhanvar, ‎S.M. Rezayat, A.M. Seifalian, Chemotherapeutic effects of Apigenin in breast cancer: preclinical evidence ‎and molecular mechanisms; enhanced bioavailability by nanoparticles, Biotechnol. Rep. (Amst)., ‎2022, 12, e00730. [Crossref], [Google Scholar], [Publisher]
‎[26]. A.S. Doost, M.N. Nasrabadi, V. Kassozi, H. Nakisozi, P. Van der Meeren. Recent advances in ‎food colloidal delivery systems for essential oils and their main components. Trends in Food Science & Technology., 2020, 99, 474-486. ‎‎ [Crossref], [Google Scholar], [Publisher]
‎[27] M. Hemati, F. Haghiralsadat, F. Yazdian, F. Jafari, A. Moradi, ‎Z. Malekpour Dehkordi, Development and characterization of a novel cationic PEGylated niosome-encapsulated ‎forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination ‎therapy, Artif. Cells, Nanomedicine, Biotechnol., 2019, 47, 1295–1311.‎ [Crossref], [Google Scholar], [Publisher]
‎[28] S. Spirou, M. Basini, A. Lascialfari, C. Sangregorio, C. Innocenti, Magnetic ‎hyperthermia and radiation therapy: radiobiological principles and current practice, ‎Nanomaterials, 2018, 8, 401.‎‎ [Crossref], [Google Scholar], [Publisher]
‎[29] R. Bnyan, I. Khan, T. Ehtezazi, I. Saleem, S. Gordon, F. O’Neill, M. Roberts, Surfactant ‎effects on lipid-based vesicles properties, J. Pharm. Sci., 2018, 107, 1237–1246.‎ [Crossref], [Google Scholar], [Publisher]‎
‎[30] S. Deljoo, N. Rabiee, M. Rabiee, Curcumin-hybrid nanoparticles in drug delivery ‎system (Review), Asian J. Nanosci. Mater., 2019, 2, 66–91.‎ [Crossref], [Google Scholar], [Publisher]