Document Type: Original Research Article

Authors

1 Department of Science, Payame Noor University, P.O. BOX 19395-3697 Tehran, Iran

2 Bioinorganic chemistry laboratory, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran

3 Bioinorganic chemistry laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran

4 Department of Biology, Faculty of Science, Guilan University, Rasht, Iran

10.33945/SAMI/ECC.2019.1.4

Abstract

In this study, cellulose nanocrystals (CNC) was prepared and meso-tetrakis(4-nitrophenyl)porphyrin (TNPP) was immobilized on it. The product was identified by techniques of UV-Vis, fourier transform infrared (FT-IR), diffuse reflectance UV-Vis spectroscopy (DRS), energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The effect of an amount of a loaded porphyrin compound containing the nitro group on CNC was investigated against a typical Gram negative bacterium, Pseudomonas aeruginosa, and a typical Gram positive bacterium, Bacillus subtilis, under visible light irradiation. The results indicated that CNC incorporated with 14.9% TNPP has a good effect on the photo-inactivation of P. aeruginosa and can be used in the textile, biomedicine, biomaterials engineering, membranes and polymer nanocomposites.

Graphical Abstract

Keywords

[1] J.I. Moran,V.A. Alvarez,V.P. Cyras, A. Vazquez, Cellulose, 2008, 15, 149–159.

 

[2] Y. Zhang Xiao-Bin Lu, C. Gao, Wei-Jun Lv, Ju-Ming Yao, Journal of Fiber Bioengineering & Informatics, 2012, 5, 263–271.

 

[3] C. Ringot,V. Sol, R. Granet, P. Krausz, Materials Letters, 2009, 63, 1889–1891.

 

[4] N. Drogat, R. Granet, C. Le Morvan, G. Bégaud-Grimaud, P. Krausz,V. Sol, Bioorganic & Medicinal Chemistry Letters, 2012, 22, 3648-3652.

[5] J.P. Mbakidi, K. Herke, S. Alves, V. Chaleix, R. Granet, P. Krausz, S. Leroy-Lhez, T.S. Ouk, V. Sol, Carbohydrate Polymers, 2013, 91, 333-338.

 

[6] C. Ringot,V. Sol, M. Barrière, N. Saad, P. Bressollier, R. Granet, P. CouleaudC. FrochotP. KrauszBiomacromolecules, 2011, 12, 1716–1723.

 

[7] X.Y. Liu, H.M. Wang, J.Q. Jiang, J.H. Xiao, R.L. Gao, F.Y. Lin, Chemico-Biological Interactions, 2008, 172, 154–158.

 

[8] S. Banfi, E. Caruso, L. Buccafurni, V. Battini, S. Zazzaron, P. Barbieri, V. Orlandi, Journal of photochemistry and photobiology B Biology, 2006, 85,  28–38.

 

[9] C.M. Cassidy, R.F. Donnelly, M.M. Tunney, Journal of Photochemistry & Photobiology, B: Biology, 2010, 99, 62–66.

 

[10] A. Peèkaitytëa, R. Daugelavièiusa, A. Sadauskaitëa, V. Kirvelienëa, R. Bonnettb, E. Bakienë, 2005, No.1, 41–46.

 

[11] E.V. Alopina, T.A. Ageeva, A.V. Lyubimtse, O.Yu. Kuznetsovc, S.A. Syrbu, Os.I. Koifman, Macroheterocycles, 2012, 5, 76–80.

 

[12] R. Luguya, L. Jaquinod, F.R. Fronczek, M. Graca, H. Vicente, K.M. Smith, Tetrahedron, 2004, 60, 2757–2763.

 

[13] M.A. Schiavon, L.S. Iwamoto, A.G. Ferreira, Y. Iamamoto, M.V. B. Zanoniand M.das D. Assis, J. Braz. Chem. Soc.,2000,11, 458–466.

 

[14] K. Rajesh, A. Kalilur Rahiman, K. Shanmuga Bharathi, S. Sreedaran,V. Gangadevi,V. Narayanan, Bull. Korean Chem. Soc., 2010, 31, 2656–2664.

 

[15] J. Zhang, X. Wu, X. Cao, F. Yang, J. Wang, X. Zhoua, X. Lian Zhang, Bioorganic & Medicinal Chemistry Letters, 2003, 13, 1097–1100.

 

[16] H. Ashkenazi,Y. Nitzan, D. Ga, Photochemistry and Photobiology, 2003, 77, 186–191.

 

[17] V. Sol, P. Branland, V. Chaleix, R. Granet, M. Guilloton, F. Lamarche, B. Verneuil, P. Krausz, Bioorganic & Medicinal Chemistry Letters, 2004, 14, 4207–4211.

 

[18] D. Lazzeri, M. Rovera, L. Pascual, E.N. Durantini, Photochemistry and Photobiology, 2004, 80  286–293.

 

[19] V.T. Orlandi, E. Caruso, S. Banfi, P. Barbieri, Photochemistry and Photobiology, 2012, 88, 557–564.

 

[20] R. Rahimi, F. Fayyaz, M. Rassa, Materials Science and Engineering C, 2016, 59, 661–668.

 

[21] R. Rahimi, F. Fayyaz, M. Rassa, M. Rabbani, Iranian Chemical Communication, 2016, 4, 175-185.

 

[22] E. Feese, H. Sadeghifar, H.S. Gracz, D.S. Argyropoulos, R.A. Ghiladi, Biomacromolecules, 2011, 12, 3528–3539.

 

[23] F. Fayyaz, R. Rahimi, M. Rassa, A. Maleki, Water Science & Technology: Water Supply, 2015, 15(5), 1099-1105.

 

[24] T. Kangwanwong, W. Pluempanupat,W. Parasuk, H.E. Keenan, A. Songsasen, ScienceAsia, 2012, 38, 278–282.

 

[25] A. Allen, J. Foulk, G. Gamble, J. Cotton Sci., 2007, 11, 68–74.

 

[26] J. Alongi, C. Colleoni, G. Rosace, G. Malucell, J. Therm.Anal.Cal., 2012, 110, 1207–1216.

 

[27] C. Chung, M. Lee, E.K. Choe, Carbohydrate Polymer., 2004, 58, 417–420.

 

 [28] R. Dosselli, C. Tampieri, R. RuizGonzález, S.D. Munari, X. Ragàs, D. Sánchez-García, M. Agut, S. Nonell, E. Reddi, M. Gobbo, J. Med. Chem, 2013, 56, 1052−1063.

 

[29] S. Mordon, C. Cochrane, J.B. Tylcz, N. Betrouni, L. Mortier, V. Koncar, Photodiag. Photodyn. Therap., 2015, 12, 1–8.

 

[30] S. Senthilkumar, R. Hariharan, A. Suganthi, M. Ashokkumar, M. Rajarajan, K. Pitchumani, Powder Technology, 2013, 237, 497–505.

 

[31] M. Krouit, R. Granet, P. Krausz, Eur. Polym. J., 2009, 45, 1250–1259.