Web of Science (Emerging Sources Citation Index)

Document Type: Original Research Article

Authors

1 Department of Biochemistry, Payame Noor University, P.O. BOX 19395-3697 Tehran, Iran

2 payamenoor university

3 Department of Chemistry, Payame Noor University, P.O. BOX 19395-4697 Tehran, Iran

10.33945/SAMI/ECC.2019.2.8

Abstract

Polyphenol oxidase from Black mulberrys was extracted and partially purified through (NH4)2SO4 precipitation, dialysis and ion exchange chromatography. P-cresol was the better substrate for cresolase activity with a Km (11.5 mM) and catechol for catecholase activity with Km (6.4 mM) at pH 5. Km for cresolase and catecholase activity of IsoPPOII at pH 6.5 were 12 and 8.5 and for IsoPPOIII at pH 8 were 9.5 and 7.5 mM, respectively. Maximum of catalytic efficiency was obtained for cresolase activity of IsoPPOIII (92.4 unit.mg-1.mM-1) and minimum of catalytic efficiency was obtained for catecholase activity of IsoPPOII (42.9 unit.mg-1.mM-1). The enzyme showed high activity over a broad pH range of 3 – 9 so the optimum pH for PPO activity was found to be 5, 6.5 and 8. The optimal temperature for catecholase was found to be 45°C for IsoPPOIII but 40°C for IsoPPOII and IsoPPOI. Affinity of PPOs for various substrates varies widely. The enzyme showed a broad activity over a broad pH and temperature range. The thermal inactivation studies showed that the IsoPPOIII is heat resistant than IsoPPOII and IsoPPOI. The most potent inhibitors was kojic acid. Kojic acid is a potent inhibitor of IsoPPOIII ˃ IsoPPOII ˃ IsoPPOI.

Graphical Abstract

Keywords

[1] W. Broothaerts, J.LI.B. Mcpherson, E. Randall, W.D. Lane, P.A. Wierma. J. Agric. Food Chem., 200048, 5924-5928.

 

[2] J. Mejri, A. Aydi, M. Mejri, Asian Journal of Green Chemistry20182, 246-267.

 

[3] C.W. Van Gelder, W.H. Flurkey, H.J. Wichers. Phytochemistry., 199745, 1309-1323.

 

[4] D.A. Robb. In: Contie R (ed), CRC Press. Boca Raton., 19842, 207-241.

 

[5] A. Sanchez-Amat, F. Solano, Biochem.Biophys. Res. Comm., 1997, 240, 787-792.

 

[6] M. Izadi, M. Fazilati, Asian Journal of Green Chemistry20182, 346-379.

 

[7] F. Gandia-Herrero, F. Garcia-Carmona, J. Escribano. J. Agric. Food Chem., 200452, 609-615.

 

[8] M. Okot-Kotber, A. Liavoga, K.J. Yong, K. Bagorogoza, J. Agric. Food Chem., 200250, 2410-2417.

 

[9] M. Jimenezatienzar, M. Pedreno, F. Garciacarmona, Biochem. Int., 199125, 861-868.

 

[10] R.K. Santosh, P. Beena, A.G. Appu Rao, L.R. GOWDA, Biochem. J., 2006395, 551-562.

 

[11] J.H. Golbeck, K.V, Cammarata, Plant Physiology, 198167, 977-984.

 

[12] CK. Ding, K. Chachin, Y. Ueda, Y. Imahori, J Agric Food Chem., 199846, 4144-4149.

 

[13] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, J. Biol. Chem., 1951193, 265-27 .

 

[14] E.J Lourenço, J.S. Leão and V.A. Neves, Journal of Science Food and Agriculture, 1990, 52, 249-259.

 

[15] E.J. Lourenço, V.A. Neves and M.A. Da Silva, Journal of Agricultural and Food Chemistry199240, 2369-2373.

 

[16] E.M. Gonzalez, B. Ancos and M.P. Cano, Journal of Agriculture and Food Chemistry, 200048, 5459-5464.

 

[17] D. Kavrayan, T. Aydemir, Food Chemistry, 2001, 74, 147-154.

 

[18] S. Dogan, Y. Turan, H. Ertürk, O. Arslan, Journal of Agriculture and Food Chemistry., 200553, 776-785.

 

 [19] G. Rapeanu, A. Van Loey, C. Smout, M. Hendrickx, Food Chemistry, 2006, 94, 253-261.

 

 [20] L. Vamos-Vigyazo, Crit Rev Food Sci., 1981, 15, 49-127.

 

 [21] C-P. Yang, S. Fujita, K. Kohno, A. Kusubayashi, MD. Ashrafuzzaman, N.H ayashi, J Agric Food Chem., 2001, 49, 1446-9.

 

[22] MÜ. Ünal, A. Fiener, J Sci Food Agric., 200686, 2374-2379.

 

[23] U. Gawlik-Dziki, U. Szymanowska, B. Baraniak, Food Chem., 2007, 105, 1047-1053.

 

[24] VM. Gomez-Lopez, Food Chem., 2002, 77,163-169.