Web of Science (Emerging Sources Citation Index)

Document Type: Original Research Article

Authors

1 Department of Chemistry, University of Sistan and Baluchestan

2 Young Researchers and Elite Club, Bushehr Branch, Islamic Azad University, Bushehr, Iran

10.33945/SAMI/ECC.2019.4.7

Abstract

Molecular dynamics (MD) simulation and Density functional theory (DFT) methods were applied to the two thiocarbohydrazides derivatives (T1 and T2) as corrosion inhibitors for carbon steel in aqueous phase. Experimental results have shown that the corrosion rate follows the below order: T1>T2. Quantum chemical parameters such as hardness (η), electrophilicity (ω),polarizability (α), dipole moment (μ ) ,EHOMO (the energy of the highest occupied molecular orbital), ELUMO (the energy of the lowest unoccupied molecular orbital), Electronegativity (χ), the total amount of electronic charge transferred (ΔN), Lipophilicity, total negative charges on the whole of the molecule (TNC), molecular volume (MV), surface area and Fukui index were calculated. The results of quantum chemical confirm that T2 is a better inhibitor than T1. MD simulation results showed that T2 inhibitor has the higher negative interaction energy as compared to the T1 inhibitor.
Results of DFT and MD calculations confirm that T2 has more inhibition efficiency than T1, which is in good agreement with the experimentally inhibition efficiency of the reported data.

Graphical Abstract

Keywords

[1] T.P. Swiler, R.E. Loehman, Acta Materialia, 2000, 48, 4419-4424.

 

[2] A. Kornherr, S.A. French, A.A. Sokol, C.R.A. Catlow, S. Hansal, W.E.G. Hansal, J.O. Besenhard, H. Kronberger, G.E. Nauer, G. Zifferer, Chemical Physics Letters, 2004, 393, 107-111.

 

[3] A. Kornherr, S. Hansal, W.E.G. Hansal, J.O. Besenhard, H. Kronberger, G.E. Nauer,G. Zifferer, The Journal of Chemical Physics, 2003, 119, 9719-9728.

 

[4] K.F. Khaled, A.M. El-Sherik, International Journal of Electrochemical Scince, 2013, 8, 10022-10043.

 

[5] G. Gece, Corrosion Science, 2008, 50, 2981-2992.

 

[6] I.B. Obot,N.O. Obi-Egbedi, Corrosion Science, 2010, 52, 657-660.

 

[7] A.Y. Musa, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, Corrosion Science, 2010, 52, 3331-3340.

 

[8] H. Ju, Z.-P. Kai,Y. Li, Corrosion Science, 2008, 50, 865-871.

 

[9] E.E. Ebenso, D.A. Isabirye, N.O. Eddy, Int J Mol Sci, 2010, 11, 2473-2498.

 

[10] T. Arslan, F. Kandemirli, E.E. Ebenso, I. Love, H. Alemu, Corrosion Science, 2009, 51, 35-47.

 

[11] J.M. Roque, T. Pandiyan, J. Cruz, E. García-Ochoa, Corrosion Science, 2008, 50, 614-624.

 

[12] M.S. Masoud, M.K. Awad, M.A. Shaker, M.M.T. El-Tahawy, Corrosion Science, 2010, 52, 2387-2396.

 

[13] A. Popova, M. Christov, A. Zwetanova, Corrosion Science, 2007, 49, 2131-2143.

 

[14] M.K. Awad, R.M. Issa,F.M. Atlam, Materials and Corrosion, 2009, 60, 813-819.

 

[15] R.M. Issa, M.K. Awad, F.M. Atlam, Materials and Corrosion, 2010, 61, 709-714.

 

[16] G. Gece, Materials and Corrosion, 2013, 64, 940-944.

 

[17] M. Dehdab, Z. Yavari, M. Darijani, A. Bargahi, Desalination, 2016, 400, 7-17.

 

[18] M. Dehdab, M. Shahraki,S.M. Habibi-Khorassani, Amino Acids, 2016, 48, 291-306.

 

[19] N. Esmaeili, J. Neshati, I. Yavari, Journal of Industrial and Engineering Chemistry, 2015, 22, 159-163.

 

[20] A.D. Becke, Phys Rev A, 1988, 38, 3098-3100.

 

[21] A.D. Becke, The Journal of Chemical Physics, 1993, 98, 5648-5652.

 

[22] C. Lee, W. Yang, R.G. Parr, Physical Review B, 1988, 37, 785-789.

 

[23] M.J.T. Frisch, G. W. Schlegel, H. B. Scuseria, G.E. Robb, M.A. Cheeseman, J.R. Montgomery, Jr., J.A. Vreven, T. Kudin, K.N. Burant, J.C. Millam, J.M. Iyengar, S.S. Tomasi, J. Barone, V. Mennucci, B. Cossi, M. Scalmani, G. Rega, N. Petersson, G.A. Nakatsuji, H. Hada, M. Ehara, M. Toyota, K. Fukuda, R. Hasegawa, J. Ishida, M. Nakajima, T. Honda, Y. Kitao, O. Nakai, H. Klene, M. Li, X. Knox, J.E. Hratchian, H.P. Cross, J.B. Bakken, V. Adamo, C. Jaramillo, J. Gomperts, R. Stratmann, R.E. Yazyev, O. Austin, A.J. Cammi, R. Pomelli, C. Ochterski, J.W. Ayala, P.Y. Morokuma, K. Voth, G.A. Salvador, P. Dannenberg, J.J. Zakrzewski, V.G. Dapprich, S. Daniels, A.D. Strain, M.C. Farkas, O. Malick, D.K. Rabuck, A.D. Raghavachari, K. Foresman, J.B. Ortiz, J.V. Cui, Q. Baboul, A.G. Clifford, S. Cioslowski, J. Stefanov, B.B. Liu, G. Liashenko, A. Piskorz, P. Komaromi, I. Martin, R.L. Fox, D.J. Keith, T. Al-Laham, M.A. Peng, C.Y. Nanayakkara, A. Challacombe, M. Gill, P.M.W. Johnson, B. Chen, W. Wong, M.W. Gonzalez, C. Pople, J.A., Gaussian 03, Revision C.02(Gaussian, Inc., Wallingford CT), 2004.

 

[24] S. Miertuš, E. Scrocco,J. Tomasi, Chemical Physics, 1981, 55, 117-129.

 

[25] R.G. Parr,W. Yang, Density Functional Theory of Atoms and Molecules, (Oxford University Press, Oxford), 1989.

 

[26] R.G. Parr,R.G. Pearson, Journal of the American Chemical Society, 1983, 105, 7512-7516.

 

[27] T. Koopmans, Physica, 1934, 1, 104-113.

 

[28] C.-G. Zhan, J.A. Nichols, D.A. Dixon, The Journal of Physical Chemistry A, 2003, 107, 4184-4195.

 

[29] R.G. Parr, L.V. Szentpály,S. Liu, Journal of the American Chemical Society, 1999, 121, 1922-1924.

 

[30] A.T. Maynard, M. Huang, W.G. Rice, D.G. Covell, Proc Natl Acad Sci U S A, 1998, 95, 11578-11583.

 

[31] R.G. Pearson, Inorganic Chemistry, 1988, 27, 734-740.

 

[32] K.F. Khaled, Electrochimica Acta, 2010, 55, 6523-6532.

 

[33] N. Kovačević,A. Kokalj, The Journal of Physical Chemistry C, 2011, 115, 24189-24197.

 

[34] M. Yadav, D. Behera, S. Kumar, R.R. Sinha, Industrial & Engineering Chemistry Research, 2013, 52, 6318-6328.

 

[35] A. Kokalj, Electrochimica Acta, 2010, 56, 745-755.

 

[36] I. Obot, D. Macdonald,Z. Gasem, Corrosion Science, 2015, 99, 1-30.

 

[37] A. Kokalj, Chemical Physics, 2012, 393, 1-12.

 

[38] J. Zevallos, A. Toro-Labbé, Journal of the Chilean Chemical Society, 2003, 48, 39-47.

 

[39] T.K. Ghanty, S.K. Ghosh, The Journal of Physical Chemistry, 1993, 97, 4951-4953.

 

[40] M. Studio, in 6.1Manual, Accelrys, Inc., San Diego, CA. 2007.

 

[41] J.-M. Zhang, D.-D. Wang, K.-W. Xu, Applied Surface Science, 2006, 252, 8217-8222.

 

[42] K. Fukui, Angewandte Chemie International Edition in English, 1982, 21, 801-809.

 

[43] E.E. Ebenso, T. Arslan, F. Kandemirli, N. Caner, I. Love, International Journal of Quantum Chemistry, 2010, 110, 1003-1018.

 

[44] R.G. Pearson, Journal of Chemical Education, 1968, 45, 581-584.

 

[45] R.G. Pearson, Journal of Chemical Education, 1968, 45, 643-648.

 

[46] Mahendra Yadav, Sushil Kumar, Indra Bahadur, D. Ramjugernath, International Journal of Electrochemical Scince, 2014, 9, 6529-6550.

 

[47] I. Lukovits, E. Kalman,F. Zucchi, Corrosion, 2001, 57, 3-8.

 

[48] X. Li, S. Deng, H. Fu,T. Li, Electrochimica Acta, 2009, 54, 4089-4098.

 

[49] A.M. Al-Sabagh, N.M. Nasser, A.A. Farag, M.A. Migahed, A.M. Eissa, T. Mahmoud, Egyptian Journal of Petroleum, 2013, 22, 101-116.

 

[50] F.L. Hirshfeld, Theoretica chimica acta, 1977, 44, 129-138.

 

[51] F. De Proft, C. Van Alsenoy, A. Peeters, W. Langenaeker, P. Geerlings, Journal of Computational Chemistry, 2002, 23, 1198-1209.

 

[52] S.E. Nataraja, T.V. Venkatesha, H.C. Tandon, Corrosion Science, 2012, 60, 214-223.

 

[53] Y. Tang, X. Yang, W. Yang, Y. Chen, R. Wan, Corrosion Science, 2010, 52, 242-249.

 

[54] S. Xia, M. Qiu, L. Yu, F. Liu,H. Zhao, Corrosion Science, 2008, 50, 2021-2029.

 

[55] Y. Tang, L. Yao, C. Kong, W. Yang,Y. Chen, Corrosion Science, 2011, 53, 2046-2049.

 

[56] L. Feng, H. Yang, F. Wang, Electrochimica Acta, 2011, 58, 427-436.

 

[57] K.F. Khaled, Journal of Applied Electrochemistry, 2011, 41, 423-433.

 

[58] J. Zeng, J. Zhang,X. Gong, Computational and Theoretical Chemistry, 2011, 963, 110-114.