Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Department of chemistry, faculty of science, Arak branch, Islamic Azad University, Arak, Iran

2 Chemistry Department, Faculty of science, Hamedan branch, Islamic Azad university, Hamedan, Iran

3 Institut des sciences analytiques, Université Claude Bernard LYON-1, ENS-Lyon, CNRS UMR 5280, 43 boul. du 11 Nov. 1918, 69622 Villeurbanne, France

4 Department of Chemistry, Faculty of science, East Tehran Branch, Islamic Azad University, Tehran, IRAN

5 Department of Chemistry, faculty of Science, Farhangian University, Tehran, Iran

10.33945/SAMI/ECC.2019.5.1

Abstract

In this study, the substituent effect on the electronic, spectroscopic properties and thermodynamic parameters of neutral and oxidized states of ferrocylidene acetophenone complexes was investigated by adopting the hybrid meta exchange-correlation functional of M06-2X. The frontier orbitals and the highest occupied molecular orbitals–lowest unoccupied molecular orbitals gaps of the substituted compounds were determined. Ionization potential (IP), electron affinity, and reorganization energy values of these molecules were estimated. The thermodynamic parameters (free energy and enthalpy) of the oxidation reaction of the studied complexes were calculated. Also, a variation on the wavenumber of carbonyl group in both states was revealed. Correlations between the evaluated properties and Hammett's constant were explored.

Graphical Abstract

Computational study of substituent effect on the electronic properties of ferrocylidene acetophenones complexes

Keywords

1] S.M. Batterjee, M.I. Marzouk, M.E. Aazab, A. El-Hashash, Appl. Organometal. Chem., 2003, 17M, 291-297.
 
[2] A. Stockmann, J. Kurzawa, N. Fritz, N. Acar, S. Schneider, J. Daub, R. Engl, T. Clark, J. Phys. Chem. A., 2002, 106, 7958-7970.
 
[3] M. Ottonelli, M. Piccardo, D. Duce, S. Thea, G. Dellepiane, J. Phys. Chem. A., 2012, 116, 611-630.
 
[4] Y.H. Cheng,Y. Fang, X. Zhao, L. Liu, Q.X. Guo, Bull. Chem. Soc. Jpn., 2002, 75, 1715-1722.
 
[5] F. Pichierri, Theor. Chem. Acc., 2017, 136, 114-123.
 
[6] G.S. Remya,C.H. Suresh, phys.Chem.Chem.Phys., 2016, 18, 20615-20626.
 
[7] H. Szatylowicz, A. Jezuita, T.Siodła, K.S. Varaksin, M.A. Domanski, K. Ejsmont, T.M. Krygowski, ACS Omega, 2017, 2, 7163-7171.
 
[8] R. Ghiasi, A.zamani, J. Chin. Chem. Soc., 2017, 64, 1340-1346.
 
[9] R. Ghiasi, H. Pasdar, S. Fereidoni, Russian J. Inorg. Chem., 2016, 61, 327-333.
 
[10] R. Ghiasi, A. Heydarbeighi, Russian J. Inorg. Chem., 2016, 61, 985-992.
 
[11] R. Ghiasi, H. Pasdar, F. Irajizadeh, J. Chil. Chem. Soc, 2015, 60, 2740-2746.
 
[12] R.Ghiasi, S.Abdolmohammadi, S. Moslemizadeh, J. Chin. Chem. Soc., 2015, 62, 898-905.
 
[13] A. Peikari, R. Ghiasi, H. Pasdar, Russian J. Phys. Chem. A, 2015, 89, 250-255.
 
[14] R. Ghiasi, E. Amini, J. Struc. Chem., 2015, 56, 1483.
 
[15] M.Z. Fashami, R. Ghiasi, J. Struc. Chem., 2015, 56, 1474-1482.
 
[16] R. Ghiasi, A. Boshak, J. Mex. Chem. Soc., 2013, 57, 8-15.
 
[17] H. Pasdar, R. Ghiasi, Main Group Chem., 2009, 8, 143-150.
 
[18] (a) A.N. Egorochkin, O.V. Kuznetsova, N.M. Khamaletdinova, L.G. Domratcheva-Lvova, Inorganica Chim. Acta, 2018, 471, 148-158; (b) S. Sajjadifar, Chemical Methodologies, 2017, 1, 1-11.
 
[19] H. Anane, S.E. Houssame, A.E. Guerraze, A. Guermoune, A. Boutalib, A. Jarid, I. Nebot-Gil, F. Tomás, Cent. Eur. J. Chem. , 2008, 6, 400-403.
 
[20] M.H. Fekri, A. Omrani, S. Jamehbozorgi, M. Razavi mehr, Advanced Journal of Chemistry-Section A, 2019, 2, 14-20.
 
[21] L.P. Hammett, J. Am. Chem. Soc. , 1937, 59, 96-103.
 
[22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalman,V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Revision A.02 ed.; Gaussian, Inc.: Wallingford CT, 2009.
 
[23] D. Rappoport, F. Furche, J. Chem. Phys., 2010, 133, 134105.
 
[24] Y. Zhao, D.G. Truhla, J. Phys. Chem. A, 2006, 110, 5121-5129.
 
[25] A. Curioni, M. Boero,W. Andreoni, Chem. Phys. Lett., 1998, 294, 263-271.
 
[26] I. Wang, E. Botzung-Appert, O. Stephan, A. Ibanez, P.L. Baldeck, J. Opt. A: Pure. Appl. Opt., 2002, 4, S258.