Document Type: Original Research Article

Authors

Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

10.33945/SAMI/ECC.2019.5.4

Abstract

Biological synthesis of metallic nanoparticles is considered as a fast, eco-friendly, affordable and easily scalable technology. Also, the nanoparticles produced by plants are very stable. In this study, the focus is on the synthesis of silver nanoparticles using extract of eryngium campestre. The effective parameters such as concentration of silver nitrate, pH, temperature and time, size and morphology of the nanoparticles were investigated and controlled by (UV-Vis) spectroscopy in the range of 300-500 nm. Silver nanoparticles were synthesized under optimal conditions of 1 mM silver nitrate, pH=5, temperature= 50 °C and synthesis time of 100 minutes. Then, characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Scanning electron microscope (SEM), Energy dispersive X-ray (EDX) analysis.

Graphical Abstract

Keywords

[1] M.A. Albrecht, C. W. Evans, C. L. Raston, Green Chem., 2006, 8, 417–432.
[2] M. Rai, A. Yadav, A. Gade, C. Rev, Biotechnol., 2008, 28, 277–284.
[3] J. Huang, C. Chen, N. He, J. Hong, Y. Lu, L. Qingbiao, D. Sun, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen. Nanotechnology., 2007, 18, 105–106.
[4] Z. Liu, D.G. Bucknall, M.G. Allen, Nanotechnology., 2011, 22, 225–302.
[5] P. Mohanpuria, N.K. Rana, S.K. Yadav, J. Nanoparticle. Res., 2008, 10, 507–517.
[6] C. Dipankar, S. Murugan, Colloids. Surf. B: Biointerfaces., 2012, 98, 112–119.
[7] R.O. Becker, J.A. Spadaro, J. Bone. Joint. Surg., 1978, 60, 871–881.
[8] F. Martinez-Gutierrez, P.L. Olive, A. Banuelos, E. Orrantia, N. Nino, E.M. Sanchez, Nanomedicine, 2010, 6, 681–688.
[9] S. Kokura, O. Handa, T. Takagi, T. Ishikawa, Y. Naito, T. Yoshikawa, Nanomedicine., 2010, 6, 570–574.
[10] D.S. Goodsell, Bionanotechnology: lessons from nature. Wiley, Hoboken, 2004.
[11] R. Shaikh, I. Zainuddin Syed, Payoshni Bhende. Asian Journal of Green Chemistry., 2019, 3, 70–81.
[12] K. Yokohama, D.R. Welchons, Nanotechnology., 2007, 18, 105101–105107.
[13] N. Vigneshwaran, A.A. Kathe, P.V. Varadarajan, R.P. Nachane, R.J. Balasubramanya, J. Nanosci. Nanotechnol., 2007, 7, 1893–1897.
[14] U. Suriyakalaa, J.J. Antony, S. Suganya, D. Siva, R. Sukirtha, S. Kamalakkannan, T. Pichiah, S. Achiraman, Coll. Surf. B., 2013, 102, 189–194.
[15] D. Elumalai, M. Sathiyaraj, E. Vimalkumar, P.K. Kaleena, M. Hemavathi, P. Venkatesh. Asian Journal of Green Chemistry, 2019, 3, 103–124.
[16] S. Dubey, M. Lahtinen, M. Särkkä, H. Sillanpää, Colloid. Surf. B., 2010, 80, 26–33.
[17] S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry.  Biotechnol. Prog., 2006, 22, 577–583.
[18] F. LU, Y. Gao, J. Huang, D. Sun, Q. Li, Chin. Chem. Eng., 2014, 22, 706-712.
[19] A. Shukla, B.A. Makwana, Am. J. Nanoscience Nanotechnol., 2014, 2, 84-92.
[20] A. Jafari, L. Pourakbar, K. Farhadi, L. Mohamadgolizad, Y. Goosta, Turk. J. Biol., 2015, 39, 556-561.
[21] S. Cone, A.E. Pârvu, M.A. Taulescu, L. Vlase, Digest. J. Nanomaterials Biostruc., 2015, 10, 693 –704.
[22] D. Sreemanti, D. Jayeeta, S. Asmita, B.C. Soumya Sundar, D. Durba, R. Anisur, B. Khuda, Colloids Surf. B: Biointerface., 2013, 101, 325 – 336.
[23] J. ha, A.K. Prasad, J. Green Nanotech. Phy: Chem., 2010, 1, 110–117.
[24] S.P. Dubey, M. Lahtinen, M. Sillanpaa, Process Biochem, 2010, 45, 1065–1071.
[25] J.Y. Song, B.S. Kim, Bioprocess Biosyst. Eng., 2009, 32, 79–84.
[26] S. Alizadeh, T. Madrakian, M. Bahram, Adv. J. Chem. A., 2019, 2, 57–72.
[27] E. Arshadi, S. Sedaghat, O. Moradi, Asian Journal of Green Chemistry., 2018, 2, 41-50.
[28] N. Khatoon, J.A. Mazumder, M. Sardar, J. Nanosciences: Current Res., 2017, 2, 107-114.
[29] S. Si, T.K. Mandal.  Chem. Eur. J., 2007, 13, 3160- 3168.