Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

2 Department of Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

10.33945/SAMI/ECC.2019.6.7

Abstract

Nowadays, computational tools for analyzing and collecting data in the operation of petroleum units are essential. One of the methods is the classification or regression is to step in the overall process of knowledge extraction. In this article, one of specific type of decision called the conditional contract arrangement, is used to extract the relevant knowledge in Catalytic Reforming Units (CRU) for 4 factors: Density, PH, total iron ions in vessels (S.FE) and H2S. All of these factors are related to corrosion in CRU units and this paper aims to optimize some conditions to eliminate it. In this regard, using ammonium water with a specific range and pH can be helpful. According to the obtained results the best range of density (in Feed) is less than 0.515 kg/m3, PH (water in vessels) is more than 6.7, S.FE is less than 1.5 ppm and H2S in recycle gas is less than 700 ppm. The outcomes also show how this approach can be used to gain insight into some refineries and how to deliver results in a comprehensible and user-friendly way.

Graphical Abstract

Use of data mining in the corrosion classification of pipelines in catalytic reforming units (CRU)

Keywords

[1] S. Arlot, A. Celisse, Stat. Surv., 2010, 4, 40–79.
[2] L. Ting L., Z. Yuannong, J. Chunhua, Y. Guobin, Z. Zhengyu, Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 179, 389-395.
[3] A. Nahla Ben, E. Zeineb, F. Hélène, S. Sabbadin, Fuzzy Sets and Systems, 2018, 99-104.
[4] K. Khalili-Da., F. Abdi, S. Aboni., Applied Soft Computing, 2018, 73, 816-828.
[5] M. Gerdes, Master’s thesis. Linköping University, Fluid and Mechatronic Systems, the Institute of Technology, 2017, 11-42.
[6] T. Hastie, R. Tibshirani, J. Friedman, Springer, 2009, 15, 587–604.
[7] W. Lihong., L. Qiang., Y. Yanwei., L. Jinglei., Expert Systems with Applications, 2018, 105, 112-128.
[8] S. Janitza., G. Tutz., A. Boulesteix., Comput. Stat. Data Anal., 2016, 57–73.
[9] GU. Shankru., K. Vijayakumar., V. Umadevi, Future Computing and Informatics Journal, 2018, 210-224.
[10] G. Xiaoyong., H. Dexian., J. Yongheng., T. Chen., Chinese Journal of Chemical Engineering, 2018, 26, 1605-1612.
[11] I. Marton., A. Sánchezb., S. Carlosa., S. Martorella., Chem. Eng. Trans, 2013, 2, 301–306.
[12] E. Mazloumi., G. Rose., G. Currie., S. Moridpour., Eng. Appl. Artif. Intell., 2011, 3, 534–542.
[13] (a) S. Mohammadi, A. Taheri, Z. Rezayati-zad, Prog. Chem. Biochem. Res., 2018, 1, 1-10; (b) S. Sajjadifar, Z. Arzehgar, A. Ghayuri, Journal of the Chinese Chemical Society, 2018, 65, 205-211.
[14] S. Aline., L. Eduardo., A. Felipe de A. Mello Pereira., Information Processing Letters, 2017, 127, 27-31.
[15] T. Varga., F. Szeifert., J. Abonyi., Eng. Appl. Artif. Intell., 2009, 569–578.
[16] T. Madhar., Journal of Safety Research, 2018, 66, 121-129.
[17] H. OH., W.S. SEO., Japan Journal of Nursing Science., 2012, 3,  110-121.
[18] G. Zhou., L. Wang., Transportation Research: Part C, 2012, 287-305.
[19] S. Sohn., J. Kim., Expert Systems with Applications, 2012, 39, 4007-4012.
[20] J. Choand., P.U. Kurup., Sensors & Actuators B: Chemical, 2011, 160, 542-548.
[21] G. Stanley., The National Academy of Sciences, 2006, 88, 145-154.
[22] M. Saidi., N. Mostoufi., R. Sotudeh., International Journal of Applied Engineering Research, 2011, 2, 540-555.
[23] M. Gyngazova., A.V. Kravtsor., E.D. Ivanchina., M.R. Korolenko., D.D. Uvarkina.,Catalysis in Industry, 2010, 2, 117-128.
[24] H. Weifeng., S. Hongye., MU. Shengjing., CHU. Jian., Chinese Journal of Chemical Engineering, 2007, 15, 75 – 80.
[25] S. Raseev, Science and Technology, 2003, 111-124.
[26] T. Gueddar., D. Vivek., Computer & Chemical Engineering, 2011, 385, 1838-1856.
[27] M.S. Gyngazova, N.V. Chekantsev, M.V. Korolenko, E.D. Ivanchina, A.V. Kravtsov, Catalysis in Industry, 2012, 4, 284-291.
[28] D. Iranshah, M. Karimi, S. Amiri, M. Jafari, R. Rafiei, M. Rahimpour, Chemical Engineering Research and Design, 2014, 9, 1704-1727.
[29] M.Z. Stijepovic, A.V. Ostojic, I. Milenkovic, P. Linke, Energy & Fuel Journal, 2009, 23, 979-983.
[30] H. Arani, M. Shirvani, K. Safdarian, E. Dorostkar, Journal Chemical Engineering, 2009, 26, 723-732.
[31] R.E. Palmer, S.H. Kao, C. Tong, D.R. Shipman, Hydrocarbon Processing., 2008, 55-66.
[32] A. Anatolevich, S. Michailovich, Chemical Methodologies, 2019, 1, 1-14
[33] S. Houshmandynia, R.. Raked, F. Golbabaei, Chemical Methodologies, 2018, 4, 270-340.
[34] H. Shafiee, F. Mostaghni, K. Ejraei, Chemical Methodologies, 2018, 2, 83-180.
[35] O. Ghasemi, N. Mehrdadi, M. Baghdadi, B. Aminzadeh, Iran. Chem. Commun., 2019, 4, 352-3674.
[36] G. Mansouri, M. Ghobadi, Iran. Chem. Commun., 2019, 4, 424-431.
[37] S.M. Habibi-Khorassani, M. Dehdab, M. Darijani, Iran. Chem. Commun., 2019, 4, 455-471.
[38] F. Fayyaz Jorshari, M. Rabbani, R. Rahimi, M. Rassa, Iran. Chem. Commun., 2019, 1, 53-62.
[39] R. Motamedi, F. Ebrahimi, G. Rezanejade Bardajee, Asian J. Green Chem., 2019, 3, 22-33.
[40] S. Sajjadifar, I. Amini, H. Jabbari, O. Pouralimardan, M.H. Fekri, K. Pal, Iran. Chem. Commun., 2019, 7, 191-199.
[41] A. Hassankhani, Iran. Chem. Commun., 2019, 7, 248-256.
[42] H. Hasani, M.Irizeh, Asian J. Green Chem., 2018, 2, 85-95.
[43] L. Nagarapu, M. Baseeruddin, S. Apuri, S. Kantevari, Catal. Commun., 2007, 8, 1729-1734.
[44] J. Luo, Q. Zhang, Monatsh. Chem., 2011, 142, 923-930.
[45] W.-Q. Jiang, L.-T. An, J.-P. Zou, Chin. J. Chem., 2008, 26, 1697-1701.
[46] M. Lei, L. Ma, L. Hu, Tetrahedron Lett., 2009, 50, 6393-6397.
[47] S. Sheik Mansoor, K. Aswin, K. Logaiya, S.P.N. Sudhan, J. Saudi Chem. Soc., 2016, 20, 138-150.
[48] (a) M. Kooti, M. Karimi, E. Nasiri, J. Nanopart. Res., 2018, 20, Art. No. 16; (b) Z. Arzehgar, S. Sajjadifar, H. Arandiyan, Asian J. Green Chem., 2019, 3, 43-52.
[49] S. Ameli, A. Davoodnia, M. Pordel, Org. Prep. Proced. Int., 2016, 48, 328-336.
[50] M. Fattahi, A. Davoodnia, M. Pordel, Russ. J. Gen. Chem., 2017, 87, 863-867.
[51] F. Tajfirooz, A. Davoodnia, M. Pordel, M. Ebrahimi, A. Khojastehnezhad, Appl. Organometal. Chem., 2018, 32, Art. No. e3930.
[52] A. Nakhaei, A. Davoodnia, S. Yadegarian, Iran. Chem. Commun., 2018, 6, 334-345.
[53] E. Teymooria, A. Davoodnia, A. Khojastehnezhad, N. Hosseininasab, Iran. Chem. Commun., 2019, 7, 271-282.
[54] (a) A.N. Egorochkin, O.V. Kuznetsova, N.M. Khamaletdinova, L.G. Domratcheva-Lvova, Inorganica Chim. Acta, 2018, 471, 148-158; (b) S. Sajjadifar, Chemical Methodologies, 2017, 1, 1-11.
[55] H. Anane, S.E. Houssame, A.E. Guerraze, A. Guermoune, A. Boutalib, A. Jarid, I. Nebot-Gil, F. Tomás, Cent. Eur. J. Chem. , 2008, 6, 400-403.
[56] M.H. Fekri, A. Omrani, S. Jamehbozorgi, M. Razavi mehr, Advanced Journal of Chemistry-Section A, 2019, 2, 14-20.
[57] H. Szatylowicz, A. Jezuita, T. Siodła, K.S. Varaksin, M.A. Domanski, K. Ejsmont, T.M. Krygowski, ACS Omega, 2017, 2, 7163-7171.
[58] R. Ghiasi, A.Zamani, J. Chin. Chem. Soc., 2017, 64, 1340-1346.
[59] R. Ghiasi, H. Pasdar, S. Fereidoni, Russian J. Inorg. Chem., 2016, 61, 327-333.
[60] R. Ghiasi, A. Heydarbeighi, Russian J. Inorg. Chem., 2016, 61, 985-992.