Web of Science (Emerging Sources Citation Index)

Document Type: Original Research Article

Authors

Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre rey Branch, Islamic Azad University, Tehran, Iran

Abstract

In this study ، Cytarabine anticancer drug approached fullerene C20 and variations in the chemical properties and reactivity of Cytarabine (anti-cancer drug) the thermodynamic parameters of the formation of nano-derivatives of the Cytarabine with the fullerene C20 nanostructure were calculated. For this purpose, seven states proposed for the formation of nano-derivatives ، all compounds were geometric optimization. Then, the calculations for determining the thermodynamic parameters at a temperature range of 298.15° K to 103.10° K (every one degree) and at a constant pressure of 1 atm and gas phase as well as the aqueous solvent phase is done. All calculations were performed using the B3LYP density functional theory method and the 31G-6* base series using Gaussian, Nanotube Modeler, Gauss view and Spartan software. It was found the optimal temperature for the synthesis of both water and gas phase is 298° K. According to the calculations carried out in the gas phase, the adsorption of V isomer is more likely, but in the aqueous solvent phase, the adsorption of the VI isomer is more probable.

Graphical Abstract

Keywords

[1] R. Rahimi, S. Kamalinahad, M. Solimannejad, Mater. Res. Express., 2018, 5, 1-17.

[2] L.K. Liu, D.F. Becker, J.J. Tanner, Arc. Biochem. Biophys., 2017, 632, 147-157.

[3] M.M. Gomez, R. Motila, E. Diez, Electrochim. Acta., 1989, 34, 831-839.

[4] L.G. Heller, E.R. Kirch, J. Am. Pharm. Assoc.,1947, 36, 345-349.

[5] P. Chang, Z. Zhang, C. Yang, Anal. Chim. Acta., 2010, 666, 70-75.

[6] J.W. Costin, N.W. Barnett, S.W. Lewis, Talanta., 2004, 64, 894-898.

[7] H. Zheng, Y. Hirose, T. Kimura, S. Suye, T. Hori, H. Katayama, J. Arai, R. Kawakami, T. Ohshima, Sci. Tech. Adv. Mater., 2006, 7, 243-248.

[8] C. Truzzi, A. Annibaldi, S. Illuminati, C. Finale, G. Scarponi, Food. Chem., 2014, 150, 477-481.

[9] R. Ahmadi, E.S. Mirkamali, J. Phys. Theor. Chem. IAU Iran., 2016, 13, 297 -302.

[10] R. Ahmadi, M. Ebrahimikia, Phys. Chem. Res., 2017, 5, 617 -627.

[11] L.Shemshaki, R. Ahmadi, Int. J. New. Chem., 2015, 2, 189-198.

[12] R. Ahmadi, N. Madahzadeh Darini, Int. J. Bio-Inorg. Hybr.Nanomater., 2016, 5, 273-278.

[13] R. Ahmadi, L. Shemshaki,., Int. J. Bio-Inorg. Hybr. Nanomater., 2016, 5,141 -146.

[14] M. Culebras, A.M. Lopez, C.M. Gomez, A. Cantarero, Sens. Actuators. A. Phys., 2016, 239, 161 –165.

[15] B. Farhang Rik., R. Ranjineh Kkhojasteh, R. Ahmadi, M. Karegar Razi, Iran. Chem. Commun., 2019, 7, 405 -414.

[16] M.R. Jalali Sarvestani, R. Ahmadi, J. Water Environ. Nanotechnol., 2019, 4, 48 -59.

[17] E.S. Mirkamali, R. Ahmadi, K. Kalateh G. Zarei, Nanomed. J., 2019, 6, 112 -119.

[18] R. Ahmadi, M.R. Jalali Sarvestani, Phys. Chem. Res., 2018, 6, 639-655.

[19] M.R. Jalali Sarvestani, R. Ahmadi, Int. J. New. Chem., 2018, 4, 400-408.

[20] M.R. Jalali Sarvestani, R. Ahmadi, Int. J. New. Chem., 2018, 5, 409-418.

[21] R. Ahmadi, M.R. Jalali Sarvestani, Int. J. Bio-Inorg. Hybrid. Nanomater. 2017, 6, 239-244.

[22] R. Ahmadi, Int. J. Nano. Dimens. 2017, 8, 250-256.

[23] M.R. Jalali Sarvestani, L. Hajiaghbabaei, J. Najafpour, S. Suzangarzadeh, Anal. Bioanal. Electrochem., 2018, 10, 675-698.

[24] W. Schnelle, R. Fischer, J. Gmelin, J. Phys. D. Appl. Phys., 2001, 34, 846-851.

[25] Z. Javanshir, S. Jameh-Bozorghi, P. Peyki, Adv. J. Chem. A., 2018, 1, 117-126.

[26] M.T. Baei, Comput. Theor. Chem., 2013, 1024, 28-33.

[27] R. Ahmadi, M.R. Jalali Sarvestani, Iran. Chem. Commun., 2019, 7, 344-351.

[28] R. Ahmadi, M. Jalali Sarvestani, B. Sadeghi, Int. J. Nano Dimens., 2018, 9, 325-335.

[29] A. Soltani, M.T. Baei, M. Mirarab, M. Sheikhi, E.T. Lemeshki, J. Phys. Chem. Solids., 2014, 75, 1099-1105.

[30] M.T. Baei, Heteroatom. Chem., 2013, 24, 516-523.