NBO and QTAIM investigations of the conformers of 1, 4-dioxane-2, 3-bis(pyridin-1-ium) and 1, 4-dioxane-2, 5-bis(pyridin-1-ium) molecules

Elaheh Faramarzia, Reza Ghiasib,*, Masumeh Abdoli- Senejania

aDepartment of chemistry, Faculty of science, Arak Branch, Islamic Azad University, Arak, Iran
bDepartment of Chemistry, Faculty of science, East Tehran Branch, Islamic Azad University, Tehran, Iran

Received: 13 August 2019, Accepted: 14 October 2019, Published: 01 November 2019

Abstract
This research aimed at exploring the stabilities of conformers of 1, 4-dioxane-2, 3-bis (pyridin-1-ium) and 1, 4-dioxane-2, 5-bis(pyridin-1-ium) molecules at the B3LYP/6-31+G (d,p) theory level. To this goal, estimations of the total energies and dipole moments of the axial and equatorial conformations were first done for the mentioned molecules. C-N and C-O bond distances were calculated and these variations were explained with the negative hyperconjugative anomeric effects. The negative hyperconjugative anomeric effect on the axial conformer was illustrated by NBO analysis and the interactions responsible for the effect were explored. Also, QTAIM study was used for illustration of the C-N and C-C bonds in the studied systems.

Keywords: 1, 4-Dioxane; negative hyperconjugative effect; conformers; natural bond orbital analysis (NBO); quantum theory of atoms in molecules (QTAIM).

Introduction
1, 4-Dioxane is a heterocyclic organic compound that is classified as an ether. This colorless liquid has a faintly sweet odor similar to that of diethyl ether. The compound is often called simply dioxane because the other dioxane isomers (1, 2- and 1, 3-) are rarely encountered. Dioxane is used as a solvent for a variety of practical applications as well as in the laboratory, and also as a stabilizer for the transport of chlorinated hydrocarbons in aluminum containers [1,2]. Since 1,4-dioxane is a probable human carcinogen and is highly miscible in water [1], special attention has been given to its presence in subsurface aquifers where it poses a health risk. Synthesis and properties of various compounds of the family of 1,4-dioxane molecules have been investigated in several studies [3-11].

The synthesis of 2,3-dichloro- and 2, 3-dibromo-1, 4-dioxanes [12] and also 2, 5-dichloro-1, 4-dioxane [13] molecules has been reported and the geometry and conformations of these compounds have been accurately determined using X-ray diffraction (XRD) techniques [14]. The obtained results demonstrated the existence of only the axial-axial conformation in this compound and showed that the endocyclic atomic
distances from oxygen atom to a carbon atom carrying a halogen atom are significantly smaller than the corresponding distances to carbon atoms without halogen atoms. Also, the structure and spectroscopic properties of dioxanylamine have been studied [15-17].

The stability of the conformation in the many cyclic molecules is influenced with the anomeric effect [18]. The anomeric effect is occurred when two electronegative substituents are attached to a sp³-hybridized carbon atom. Computational studies are useful for explanation of the anomeric effect in the cyclic molecules the same as what have been employed to illustration of the structure and properties of the molecules [19-28]. Numerous theoretical investigations have been reported about the anomeric effect [29-41].

In the present investigation, the stabilities of conformers of 1,4-dioxane-2,3-bis(pyridin-1-ium) and 1,4-dioxane-2,5-bis(pyridin-1-ium) are studied at the B3LYP/6-311+G(d,p) theory level. In addition, the negative hyperconjugative anomeric effects of these conformers are explored by NBO analysis. Also, QTAIM study was employed for illustration of the C-N and C-C bonds in the studied systems.

Computational methods
All computations were carried out with the Gaussian 09 software package [42]. The calculations were carried out using standard 6-311+G(d,p) basis set [43-45]. The B3LYP hybrid functional method was utilized to optimize the geometries [46-48]. B3LYP uses the non-local correlation provided by the LYP expression.

The characteristics of each observed stationary point have been confirmed in terms of having the least energy by conducting a vibrational analysis. In this regard, Gaussian 09 software suite is employed to analyze the population through the NBO process of the NBO 6.0 program [49] at the B3LYP/6-311+G(d,p) theory level.

Quantum theory of atoms in molecules analysis (QTAIM) computations were performed with the Multiwfn 3.5 package [50].

Results and discussion
Energetic aspects
Conformers of the axial and equatorial conformers of 1, 4-dioxane-2, 3-bis(pyridin-1-ium) and 1, 4-dioxane-2, 5-bis(pyridin-1-ium) molecules are depicted in Figure 1. The absolute energy and relative energy values of these conformers are gathered in Table 1. As can be seen, the axial conformer is more stable than equatorial conformer in both isomers. Moreover, more relative energy values (ΔE(1)) of equatorial conformer in II-isomer can be observed compared to I-isomer.

On the other hand, energetic aspect shows the more stability of II-isomer than I-isomer. The corresponding relative energy values (ΔE(2)) are larger in equatorial conformer compared to axial isomer.

![Figure 1. axial and equatorial conformers of 1, 4-dioxane-2, 3-bis(pyridin-1-ium) (I) and 1, 4-dioxane-2,5-bis(pyridin-1-ium) (II) molecules](image-url)
NBO and QTAIM investigations of the conformers ...

Table 1. Absolute energy (a.u), relative energy (kcal/mol) and dipole moment (μ, Debye) values of the axial and equatorial conformers of 1,4-dioxane-2,3-bis(pyridin-1-ium) (I) and 1,4-dioxane-2,5-bis(pyridin-1-ium) (II) molecules at B3LYP/6-311+G(d,p) level of theory.

<table>
<thead>
<tr>
<th>isomer</th>
<th>E(axial)</th>
<th>ΔE(1)</th>
<th>E(equatorial)</th>
<th>ΔE(2)</th>
<th>μ(axial)</th>
<th>Δμ</th>
<th>μ(equatorial)</th>
<th>Δμ</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-802.681</td>
<td>0.44</td>
<td>-802.681</td>
<td>7.35</td>
<td>2.4949</td>
<td></td>
<td>4.2807</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>-802.692</td>
<td>4.19</td>
<td>-802.699</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Molecular orbital analysis

The energies of the frontier orbitals (HOMO, LUMO), the corresponding HOMO–LUMO energy gaps, hardness, chemical potential and electrophilicity values of the investigated molecules are given in Table 2.

According to the Koopmans’ theorem, ionization potential (IE) and Electron affinity (EA) values are:

IE = -E(HOMO); EA = E(LUMO)

Therefore, chemical hardness (η), chemical potential (μ) and global electrophilicity index (ω) values can be calculated as:

η = \frac{E(LUMO) - E(HOMO)}{2}

μ = \frac{E(LUMO) - E(HOMO)}{2}

ω = \frac{μ^2}{2η}

As shown in Table 2, HOMO-LUMO gap and hardness of axial conformer are more than equatorial conformer. As expected from the minimum energy principle (MEP), and maximum hardness principle (MHP), that is, while a conformer changes from the most stable to other less stable species in most cases, the energy increases, and the hardness decreases [51-55].

The calculated electrophilicity (ω) values are listed in Table 2. The smaller ω values in axial conformer compared to equatorial conformer can be observed. This trend is compatible with the minimum electrophilicity principle (MEIP) [56,57] that is, while a conformer changes from the most stable to other less stable species in most cases, the energy increases, and the electrophilicity increases. This principle may be defined as, “electrophilicity will be a minimum (maximum) when both chemical potential and hardness are maxima (minima)”. The calculated chemical potential (μ) values of the studying molecules are shown in Table 2. It can be found, μ values of axial conformer are smaller than equatorial conformer.

Table 2. Absolute energy (a.u), relative energy (kcal/mol) and dipole moment (μ, Debye) values of the axial and equatorial conformers of 1,4-dioxane-2,3-bis(pyridin-1-ium) (I) and 1,4-dioxane-2,5-bis(pyridin-1-ium) (II) molecules at B3LYP/6-311+G(d,p) level of theory.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>E(HOMO)</th>
<th>E(LUMO)</th>
<th>Gap</th>
<th>μ</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>axial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>-14.87</td>
<td>-9.45</td>
<td>5.43</td>
<td>2.71</td>
<td>-12.16</td>
</tr>
<tr>
<td>II</td>
<td>-14.87</td>
<td>-9.22</td>
<td>5.65</td>
<td>2.82</td>
<td>-12.04</td>
</tr>
<tr>
<td>equatorial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>-14.44</td>
<td>-9.62</td>
<td>4.82</td>
<td>2.41</td>
<td>-12.03</td>
</tr>
<tr>
<td>II</td>
<td>-14.42</td>
<td>-9.06</td>
<td>5.36</td>
<td>2.68</td>
<td>-11.74</td>
</tr>
</tbody>
</table>
Dipole moment

Generally, it has been accepted that there is a preference for the conformation with the smallest resultant dipole moment [58]. In the gas phase or in the nonpolar media, the conformations with the larger dipole moment may have the larger electrostatic energy. Therefore, we may expect that the conformation with the larger dipole moment may have greater overall energy. The calculated dipole moments for the axial and equatorial conformers investigated compounds are given in Table 1. These results show that the dipole moments for the axial conformer of the studied compounds are smaller than those in equatorial conformer. Orientations of the dipole moment vector are presented in Figure 2.

Structural parameters

C-N and C-O bond distances of the studied molecules are listed in Table 3. The comparison of the C-N bond distances shows the longer bonds in axial conformer compared to equatorial conformer. This variation in bond distances and the more stability of axial conformer compared to equatorial conformer are attributed to negative hyperconjugation effects. Figure 3 represents the responsible NBOs of the mentioned negative hyperconjugation interactions which is explained in terms of a dominant LP(2)O → σ*(C-N) negative hyperconjugation interaction between a pair of non-bonded electrons on oxygen and the adjacent C-N bond in axial conformer. This interaction is the donation of electron density from a filled p-orbital of oxygen to a neighboring σ*-orbital of the C-N bond. This phenomenon, which is a type of resonance, can stabilize the molecule. As a result, it causes an elongation of the σ-bond by adding electron density to its anti-bonding orbital.

The second order perturbation theory analyses of Fock matrix in NBO basis of the LP(2)O → σ* (C-N) interactions in the axial and equatorial conformers of the studied molecules are calculated. These calculations show that E(2) values are 16.89 and 14.31 kcal/mol for I and II-isomers, respectively. As can be noticed, the stronger the interactions in the LP(2)O → σ* (C-N), the more negative the hyperconjugation interaction in I- isomer than II- isomer.

Table 3. Absolute energy (a.u), relative energy (kcal/mol) and dipole moment (μ, Debye) values of the axial and equatorial conformers of 1,4-dioxane-2,3-bis(pyridin-1-ium) (I) and 1,4-dioxane-2,5-bis(pyridin-1-ium) (II) molecules at B3LYP/6-311+G(d,p) level of theory.

<table>
<thead>
<tr>
<th></th>
<th>C1-N</th>
<th>C1-O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>axial</td>
<td>equatorial</td>
</tr>
<tr>
<td>I</td>
<td>1.5211</td>
<td>1.4925</td>
</tr>
<tr>
<td>II</td>
<td>1.5179</td>
<td>1.4896</td>
</tr>
</tbody>
</table>

QTAIM

The findings obtained from calculations of QTAIM may also describe the C-N and C-C bonds in the studied systems.

Electron density

The C-N and C-O bonds in the studied systems are listed in Table 4. The calculations of QTAIM indicate that the more density of electron on bond critical point (BCP) of C-N bonds in the equatorial conformer is compared to axial conformer. This trend is compatible with the larger C-N distances in the axial conformer than equatorial conformer. The calculations of QTAIM indicate that the less density of electron on bond critical point (BCP) of C-O bonds in equatorial conformer is compared to axial conformer. This trend is compatible with the shorter C-O distances in the axial conformer than equatorial conformer.
Laplacian of electron density
Table 4 indicates $V^2 \rho$ values of C-N and C-O bonds which are negative at related bond critical points (BCP), as it was observed for strong covalent interaction (interactions of shared).

Energy density
The total energy density (E) on bond critical point (BCP) of a bond is defined as:

$$E = G + V$$

Where, G and V are Lagrangian kinetic energy and Virial energy density, respectively.

Table 4 indicates that the energy density (H) has negative values at the BCP of C-N and C-O bonds. Therefore, there are shared interactions at these BCPs.

One can also use the $|V(r)| / G(r)$ ratio as another useful description. $|V(r)|/G(r) > 2$ is diagnostic of a “classical” covalent interaction [59]. The corresponding $|V(r)|/G(r)$ ratio values at the BCP of C-N and C-O bonds are listed in Table 4; The significant covalent interaction in the C-C and C-N bonds can be deduced.

Figure 2. Orientations of the dipole moment vector are presented in axial and equatorial conformers of 1,4-dioxane-2,3-bis(pyridin-1-ium) molecules. Hydrogen atoms were omitted.

Figure 3. The responsible NBOs of the negative hyperconjugation interactions in terms of a dominant LP(2)O $\rightarrow \sigma^*(C\text{-}N)$ in axial conformers of 1,4-dioxane-2,3-bis(pyridin-1-ium) (I) and 1,4-dioxane-2,5-bis(pyridin-1-ium) (II) molecules.
Table 4. QTAIM results of the bond critical point (BCP) of C-N and C-O bonds in the axial and equatorial conformers of 1,4-dioxane-2,3-bis(pyridin-1-iium) (I) and 1,4-dioxane-2,5-bis(pyridin-1-iium) (II) molecules at B3LYP/6-311+G(d,p) level of theory

(a) electron density (\(\rho\), in e.A\(^3\))

<table>
<thead>
<tr>
<th>isomer</th>
<th>(\rho(C1-N))</th>
<th>(\rho(C1-O))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>axial</td>
<td>equatorial</td>
</tr>
<tr>
<td>I</td>
<td>0.2322</td>
<td>0.2460</td>
</tr>
<tr>
<td>II</td>
<td>0.2326</td>
<td>0.2478</td>
</tr>
</tbody>
</table>

(b) Laplacian of electron density (\(\nabla^2\rho\), in e.A\(^5\))

<table>
<thead>
<tr>
<th>isomer</th>
<th>(\nabla^2\rho(C1-N))</th>
<th>(\nabla^2\rho(C1-O))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>axial</td>
<td>equatorial</td>
</tr>
<tr>
<td>I</td>
<td>-0.5293</td>
<td>-0.6285</td>
</tr>
<tr>
<td>II</td>
<td>-0.5382</td>
<td>-0.6421</td>
</tr>
</tbody>
</table>

(c) Lagrangian kinetic energy (a.u)

<table>
<thead>
<tr>
<th>isomer</th>
<th>(G(C1-N))</th>
<th>(G(C1-O))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>axial</td>
<td>equatorial</td>
</tr>
<tr>
<td>I</td>
<td>0.0962</td>
<td>0.1078</td>
</tr>
<tr>
<td>II</td>
<td>0.0993</td>
<td>0.1080</td>
</tr>
</tbody>
</table>

(c) Virial energy density (a.u)

<table>
<thead>
<tr>
<th>isomer</th>
<th>(V(C1-N))</th>
<th>(V(C1-O))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>axial</td>
<td>equatorial</td>
</tr>
<tr>
<td>I</td>
<td>-0.3247</td>
<td>-0.3728</td>
</tr>
<tr>
<td>II</td>
<td>-0.3332</td>
<td>-0.3766</td>
</tr>
</tbody>
</table>

(c) energy density (a.u)

<table>
<thead>
<tr>
<th>isomer</th>
<th>(E(C1-N))</th>
<th>(E(C1-O))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>axial</td>
<td>equatorial</td>
</tr>
<tr>
<td>I</td>
<td>-0.2285</td>
<td>-0.2650</td>
</tr>
<tr>
<td>II</td>
<td>-0.2339</td>
<td>-0.2686</td>
</tr>
</tbody>
</table>

(c) \(|V(r)|/G(r)|

<table>
<thead>
<tr>
<th>isomer</th>
<th>(E(C1-N))</th>
<th>(E(C1-O))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>axial</td>
<td>equatorial</td>
</tr>
<tr>
<td>I</td>
<td>3.38</td>
<td>3.46</td>
</tr>
<tr>
<td>II</td>
<td>3.35</td>
<td>3.49</td>
</tr>
</tbody>
</table>

Abbreviations
NBO: Natural bond orbital analysis
QTAIM: Quantum theory of atoms in molecules
HOMO: Highest occupied molecular orbital
LUMO: Lowest unoccupied molecular orbital
MEP: Minimum energy principle
MHP: Maximum hardness principle
MEIP: Minimum electrophilicity principle

Acknowledgements
Authors acknowledge for helpful comments of the peer reviewers.

References

How to cite this manuscript: Elaheh Faramarzi, Reza Ghiasi, Masumeh Abdoli-Senejani. “NBO and QTAIM investigations of the conformers of 1, 4-dioxane-2, 3-bis(pyridin-1-ium) and 1,4-dioxane-2, 5-bis(pyridin-1-ium) molecules”. Eurasian Chemical Communications, 2020, 2(2), 187-195.