Web of Science (Emerging Sources Citation Index), Scopus, ISC

Document Type : Original Research Article


Department of Chemistry, Arak Branch, Islamic Azad University, P.O. BOX 38135/567 Arak, Iran


A novel, rapid, simple and sensitive syringe-to-syringe-dispersive liquid–phase micro-extraction (SS-DLPME) method followed by flame atomic absorption spectrometry was proposed for pre-concentration and determination of nickel ion in water and herbal samples using 1-(2-pyridylazo)-2-naphthol as a chelating agent. Various experimental factors on pre-concentration and determination of nickel such as pH of sample solution, concentration of the complex agent, volume of the extraction solvent, shooting times, centrifugation time and ionic strength were investigated using Plackett–Burman design for screening and Box-Behnken design as an optimization method. Under optimum conditions, the calibration curve was linear over the range of 10- 875 µg L-1 with the coefficient of determination R2 = 0.997 and the detection limit of 1.800 µg L-1. Relative standard deviation (R.S.D) for 8 replicate determinations and the enrichment factor (EF), were 2.050% and 86, respectively. Finally, the proposed method was applied successfully to pre-concentration and determination of the analyte in environmental water and herbal samples

Graphical Abstract

Application of response surface methodology for optimization and determination of nickel by syringe to syringe dispersive liquid phase micro-extraction in environmental water and herb samples coupled with flame atomic absorption spectrometry


[1] X. Zhang, Y. Zhang, D. Ding, J. Zhao, J. Liu, W. Yang, K. Qu, Microchem. J, 2016, 126, 280-286.
[2] P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, in:  A. Luch (Ed.), Heavy Metal Toxicity and the Environment, Clinical And Enviromental Toxicology, Springer, Basel, 2012, 133-164.  
[3] T.K. Grimsrud, S.R. Berge, T. Haldorsen, A. Andersen, Am. J. Epidemiol., 2002, 156, 1123-32.
[4] F. Karadas, Agric. Sci., 2014, 5, 87-93.
 [5] H. Matsumiya, T. Kageyama, M. Hiraide, Anal. Chim. Acta, 2004, 507, 205-209.
[6] A. Safavi, N. Iranpoor, N. Saghir, S. Momeni, Anal. Chim. Acta, 2006, 569, 139-144.
 [7] S. Kagaya, Y. Araki, N. Hirai, K. Hasegawa, Talanta, 2005, 67, 90-97.
[8] W.L. Hu, B. Hu, Z.C. Jiang, Anal. Chim. Acta, 2006, 572, 55-62.
[9] J. Chena, S. Xiao, X. Wu, K. Fang, W. Liu, Talanta, 2005, 67, 992-996.
[10] M. Pouyan, G. Bagherian, N. Goudarzi, Microchem. J., 2016, 127, 46-51.
 [11] H.W. Chen, J.C. Jin, Y.F. Wang, Anal. Chim. Acta, 1997, 353, 181-188.
[12] S.A. Popova, S.P. Bratinova, C.R. Ivanova, Analyst,1991, 116, 525-531.
[13] J.H. Wang, E.H. Hansen, Anal. Chim. Acta, 2000, 424, 223-232.
[14] P. Gopikrishna, K.S. Rao, T.P. Rao, G.R. Naidu, Microchim. Acta, 2004, 144, 285-289.
 [15] M. Asadi, S. Dadfarnia, A.M. Haji-Shabani, Anal. Chim. Acta, 2016, 932, 22-28.
[16] C.R.T. Tarley, G. Silveira, W.N.L. Santos, G.D. Matos, E.G.P. Silva, M.A. Bezerra, M. Miró, S.L.C. Ferreira, Microchem. J., 2009, 92, 58-67.
[17] A. Mohammadzadeh, A. Samadi-Maybodi, S. Khodadoust, Spectrochim. Acta., 2013, A, 113, 423-426.
[18] C. Stalikas, Y. Fiamegos, V. Sakkas, T. Albanis, J. Chromatogr., 2009, 1216, 175-189.
[19] F.A. Aydin, M. Soylak, Talanta, 2007, 73, 134-141.
[20] M. Tuzen, M. Soylak, D. Citak, H.S. Ferreira, M.G.A. Korn, M.A. Bezerra, J. Hazard. Mater., 2009, 162, 1041-1045.
[21] M. Ghaedi, A. Shokrollahi, F. Ahmadi, H.R. Rajabi, M. Soylak, J. Hazard. Mater., 2008, 150, 533-540.
[22] Z. Zarei, F.Shemirani, J. Food Sci., 2012, 77, 1242-1248.
[23] N. Khorshidi, A. Niazi, Sep. Sci. Technol., 2016, 51, 1675-1683.
[24] B. Barfi, M. Rajabi, A. Asghari, Biol. Trace Elem. Res., 2016, 170, 496-507.
[25] N. Dallali, M.M. Zahedi, Y. Yamini, Sci. Iran., 2007, 14, 291-296.