Web of Science (Emerging Sources Citation Index)

Document Type: Original Research Article

Authors

1 Department of Chemistry, Ardebil Branch, Eslamic Azad University‌, Ardebil‌, Iran‌

2 Department of Chemistry, Payame Noor University‌, Ardebil, Iran‌

10.33945/SAMI/ECC.2019.4.8

Abstract

In the presented study, a new and efficient sorbent for the removal of Everzol Red 3BS dye from aqueous solutions was prepared by immobilization of 2,4-­dinitrophenyl hydrazine (DNPH) on γ-alumina (γ-Al2O3) ­nanoparticles coated with sodium dodecyl sulfate (DNPH­­­-­γ-alumina). The structure and morphology of the produced sorbents were characterized by Fourier Transform Infrared (FT-IR) and Scanning electron microscopy (SEM). Batch studies were performed to study the effect of various experimental parameters such as contact time, initial dye concentration, adsorbent dose and solution pH on the adsorption process. The experimental data were analyzed using the Langmuir and Freundlich isotherm models. The isotherm studies showed that the adsorption experimental data were fitted by Langmuir isotherm model. The maximum monolayer adsorption capacity (qmax) ­obtained from the Langmuir model was 10.21 and 86.96 mg/g for Everzol Red 3BS dye on nano-γ-alumina and DNPH modified γ-alumina nanoparticles (DNPH­­­-­γ-alumina), respectively. Meanwhile, thermodynamic parameters such as Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were evaluated. We found out that ∆G°, ∆H°, and ∆S° for nano-γ-alumina and DNPH modified γ-alumina nanoparticles (DNPH­­­-­γ-alumina) are -11.07 and -4.84 kJ/mol, 1.40and 3.55 kJ/mol, and 0.037 and 0.025 kJ/molK, respectively. The negative values of Gibbs free energy change (∆G°) ­show that the adsorption was feasible as the spontaneous and positive values of enthalpy change (∆H°) confirm the endothermic adsorption­­. The obtained results indicate that γ-alumina (γ-Al2O3) ­nanoparticles modified with 2, 4-dinitrophenyl hydrazine (DNPH- γ-alumina) can be used as an efficient adsorbent material for the adsorption of anionic dyes from aqueous solutions.
 

Graphical Abstract

Keywords