Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Department of Water and Wastewater Engineering, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran

2 Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas 7915893144, Iran

10.33945/SAMI/ECC.2019.5.8

Abstract

In this study, NiFe2O4 magnetic nanoparticles as an adsorbent for lead (Pb) removal were coated on sand particles. Adsorption studies were conducted to investigate the efficacy of contact time, pH, adsorbent dosage and initial lead ion concentration on the removal efficiency. To choose the most fitting kinetic model, the pseudo-first order and pseudo-second order models were compared and the most suitable kinetic model was selected by the pseudo-second order. Langmuir and Freundlich isotherms were evaluated and the most suitable isotherm was observed as the Freundlich model. In addition, the NiFe2O4 coated sand can simply be removed by an ordinary filtration process.

Graphical Abstract

NiFe2O4 coated sand as a nano-adsorbent for removal of Pb (II) from aqueous solutions

Keywords

[1]        H.T. Fan, J.B. Wu, X.L. Fan, D.S. Zhang, Z.J. Su, F. Yan, T. Sun, Chem. Eng. J., 2012, 198, 355-363.
[2]        S.N.A. Abas, M. H. S. Ismail, S. I. Siajam, M. L. Kamal,  J. Taiwan Inst. Chem. Eng., 2015, 50, 182-189.
[3]        B. Volesky, Removal and recovery of heavy metals by biosorption. Biosorption of heavy metals, 1990, Boca.Ration, FL: CRC Press.7-43
[4]        B. Amarasinghe, R. Williams, Chem. Eng. J., 2007, 132, 299-3095.
[5]     C. De Rosa, B.L. Johnson, M. Fay, H. Hansen, M.M. Mumtaz, Food Chem. Toxicol., 1996, 34, 1131-1138.
[6]        S. Bhattacharjee, S. Chakrabarty, S. Maity, S. Kar, P. Thakur, G. Bhattacharyya, Water Res., 2003, 37, 3954-3966.
[7]        S. M. Lee, , C. Laldawngliana, D. Tiwari, Chem. Eng. J., 2012, 195, 103-111.
[8]        R. Gong, W. Cai, N. Li, J. Chen, J. Liang, J. Cao, Desalin. Water Treat., 2010, 21, 274-279.
[9]        K. Yogesh Kumar, H.P. Muralidhara, Y. Arthoba Nayaka, J. Balasubramanyam, Desalin. Water Treat., 2014, 52, 4568-4582.
[10]      L. Tang, G.M. Yang, Y. Zeng, S.S. Cai, Y.Y. Li, Y. Zhou, Y.Y. Pang, Y. Liu, B. Zhang, B. Luna, Chem. Eng. J., 2014, 239, 114-122.
[11]      Y.H. Wang, S.H. Lin, R.S. Juang, J. Hazard. Mater., 2003, 102, 291-302.
[12] A. Mirzaie, J. Med. Chem. Sci., 2018, 1, 5-8.
[13] A. Sajjadi, R. Mohammadi, J. Med. Chem. Sci., 2019, 2, 55-58.
[14] K. Sudhakara, A.P. Kumar, B.P.                       Kumara, A. Raghavendera, S. Ravia, D. Negussa Keniec, Y.-I. Lee, Asian J. Nano. Mat., 2018, 1, 172-182.
[15] A. Ghorbani‑Choghamarani, M, Mohammadi,  Z. Taherinia, J. Iran. Chem. Soc., 2018, 16, 411-421.
[16] S. Gupta, M. Lakshman, J. Med. Chem. Sci., 2019, 2, 51-54.
[17]  H. Hassani, B. Zakerinasab, A. Nozarie, Asian J. Green Chem., 2018, 2, 59-69.
[18] H. Hasani, M. Irizeh, Asian J. Green Chem., 2018, 2, 85-95.
[19]      Y. Zhai, X. Chang, Y. Cui, N. Lian, S. Lai, H. Zhen, Q. He, Microchim. Acta, 2006, 154, 253-259.
[20] F. Arab, N. Rasouli, M. Movahedi, Asian J. Green Chem., 2018, 2, 25-40.
[21] B. Mohammadi, L. Salmani, Asian J. Green Chem., 2018, 2, 51-58.
[22]      S. Kango, R. Kumar, Environ. Monit. Assess., 2016, 188, 60-73.
[23]      D. Doulia, Ch. Leodopoulos, K. Gimouhopoulos, F. Rigas, J. Colloid Interface Sci., 2009, 340, 131-141.
[24]      F.D. Ardejani, Kh. Badii, N. Yousefi Limaee, S.Z. Shafaei, A.R. Mirhabibi, J.Hazard. Mater., 2008, 151, 730-737.
[25]      B. Al-Rashdi, C. Tizaoui, N. Hilal, Chem. Eng. J., 2012, 183, 294-302.
[26]      K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Ind. Eng. Chem. Fund., 1966, 5, 212-223.
[27]      Ö. Kerkez, Ş.S. Bayazit, J. Nanopart. Res., 2014, 16, 24-31.
[28]      E. Haque, J.W. Jun, S.H. Jhung, J. Hazard.Mater., 2011, 185, 507-511.
[29]      M. Mostafa, Y. H. Chen, J. Sh. Jean, Ch. Ch. Lio, Y. Ch. Lee, J. Hazard. Mater., 2011, 187, 89-95.
[30]      S.H. Khorzughy, T. Eslamkish, F. Doulati Ardejani, M.R. Heydartaemeh, Korean J. Chem. Eng., 2015, 32, 88-96.
[31]      R.I. Yousef, B. El-Eswed, H. Ala’a, Chem. Eng. J., 2011, 171, 1143-1149.
[32]      F. Omidvar-Hosseini, F. Moeinpour, J. Water Reuse Desalin., 2016, 6, 562-573.
[33] S.M. Lee, W.G. Kim, C.         Laldawngliana, D. Tiwari, J. Chem. Eng. Data, 2010, 55, 3089–3094.
[34] D. Tiwari, J.K. Yang, H.Y. Lee, K.M. Choi, S.M. Lee, J. Chem. Eng. Data, 2009,  54, 1823–1828.
[35]      M.R. Huang, , S. Li, X.G. Li, J. Phys. Chem. B, 2010, 114, 3534-3542.
[36] P. Kahrizi, F.S. Mohseni‑Shahri,  F. Moeinpour, J. Nanostructure Chem. 2018, 8, 441–452.
[37]      E. Kusvuran, D. Yildirim, A. Samil, O. Gulnaz, CLEAN–Soil Air Water, 2012, 40, 1273-1283.
[38]      R. Borah, D. Kumari, A. Gogoi, S. Biswas, R. Goswami, J. Shim, N.A. Bequm, M. Kumar, Ecotoxicol. environ. saf., 2018, 147, 585-593.
[39]      X. Ting, Y. Xing-Zhong, Ch. Xiaohong, W. Zhibin, H. Wang, L. Lijian, W. Hui, J. Longbo, Z. Guangming, Appl. Surf. Sci., 2018, 427, 1107-1117.
[40]      L. Ronghua,  L. Wen, H. Hui, J. Shuncheng,  G. Di,  L. Manlin, Zh. Zengqiang, A. Amajd,  W. Jim, J. Appl. Polym. Sci., 2018, 135, 46239.
[41]      J. Qu, X. Meng, X. Jiang, H. You, P. Wang, X. Ye, J. Clean. Prod., 2018, 183, 880-886.