Web of Science (Emerging Sources Citation Index), ISC

Document Type : Original Research Article


1 Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran

2 Department of Medical Physics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran



Various factors affect the release of radioactive materials in the power plant events including event types, wind speed, air temperature, and so on. In this study, a new model was developed using HotSpot software for calculating doses at different intervals from the site of the incident, and then, this model was simulated and validated using the MCNPX simulator code. Moreover, effective intervals of the dose caused by each radioisotope were measured. The results showed that calculations for determination of doses at different intervals can be obtained using simulation, and as a result, components and other parameters such as buildings or facilities can be added to the simulator and doses were calculated in those cases.

Graphical Abstract

Simulation and calculation of power plant accidents doses using HotSpot software


[1] M. Yastrebenetsky, Nuclear power plant instrumentation and control systems for safety and security. IGI Global, 2014.
[2] In Book planning guidance for response to a nuclear detonation, Health Physics Society McLean, 2010.
[3] J.V.I Batlle, T. Aono, J.E. Brown, A. Hosseini, J. Garnier-Laplace, T. Sazykina, F. Steenhuisen, P. Strand, Science of the Total Environment, 2014, 487, 143-153.
[4] T. Imanaka, Revisit the Hiroshima A-Bomb with a Database: Latest Scientific View on Local Fallout and Black Rain, 2011, 1-14.
[5] L. Schänzler, C. Davidson, J. D'hermain, R. Rambousky, M. Flemming, C. Smith, C. Heimbach, R. Kehlet, R.J. Santoro, Allied Engineering Publication, 2003, 14.
[6] S.D. Shamsuddin, N.A. Basri, N. Omar, M.-H. Koh, A.T. Ramli, W.M.S.W. Hassan, in Book Radioactive dispersion analysis for hypothetical nuclear power plant (NPP) candidate site in Perak state, Malaysia, ed., ed. by Editor, EDP Sciences, 2017, 156, 00009.
[7] A.S. Aliyu, A.T. Ramli, M.A. Saleh, Atmósfera, 2015, 28, 13-26.
[8] K.F. Eckerman, J.C. Ryman, Environmental Protection Agency, Report No.12, EPA-402-R-93-081., 1993.
[9] K.F. Eckerman, A.B. Wolbarst, A.C.B. Richardson, Environmental Protection Agency, Report No.11, 1988.
[10] S.G. Homann, HOTSPOT health physics codes for the PC: Lawrence Livermore National Lab., CA (United States), 2011.
[11] A. Malizia, I. Lupelli, F. D'Amico, A. Sassolini, A. Fiduccia, A.M. Quarta, R. Fiorito, A. Gucciardino, M. Richetta, C. Bellecci, Defence S&T Technical Bullettin, 2012, 5, 36-45.
[12]  F. Pappa, D. Patiris, C. Tsabaris, G. Eleftheriou, E. Androulakaki, M. Kokkoris, R. Vlastou, HNPS Proceedings, 2019, 185-190.
[13] J. Hendricks, G. McKinney, L. Waters, T. Roberts, H. Egdorf, J. Finch, H. Trellue, E. Pitcher, D. Mayo, M. Swinhoe, in Book MCNPX extensions version 2.5. 0. Los Alamos, NM: Los Alamos National Laboratory, 2005.
[14] F.H. Attix, In Book Introduction to radiological physics and radiation dosimetry, Wiley, New York., 2004.
[15] F.H. Attix, W.C. Roesch, E. Tochilin, Academic Press New York, 1968.
[16] Bielajew AF. Fundamentals of Radiation Dosimetry and Radiological Physics. The University of Michigan Department of Nuclear Engineering and Radiological Sciences, 2005.
[17] J.R. Greening. Fundamentals of radiation dosimetry, Taylor & Francis, UK, 1985.
[18] G.F. Knoll. Radiation detection and measurement: Wiley, New York, 2010.
[19] H. Cember, T.E. Johnson, Introduction to Health Physics. Fourth ed: McGraw-Hill., 2009.
[20] S. Endo, K. Tanaka, K. Shizuma, M. Hoshi, T. Imanaka, Radiation protection dosimetry, 2012, 149, 84-90.
[21] L.M. Unger, D.K. Trubey. OAK Ridge National Labratory, Energy UDo., 1982.
[22] J.S. Nasstrom, G. Sugiyama, R.L. Baskett, S.C. Larsen, M.M. Bradley. International Journal of Emergency Management, 2007, 4, 524-50.
[23] J.F. Pereira, J.U. Delgado, Brazilian Journal of Radiation Sciences, 2018, 6, 1-18.
[24] T.R. England, B.F. Rider. Los Alamos National Laboratory, Contract No. LA-UR-94-3106 ENDF-349., 1994.
[25] (a) K. Saito, T. Shimbori, R. Draxler. J, Journal of environmental radioactivity, 2015, 139, 185-99; (b) S. Sajjadifar, International Journal of ChemTech Research, 2013, 5, 385-389.
[26] H. Kato, Y. Onda, T. Wakahara, A. Kawamori, Science of the Total Environment, 2018, 615, 187-96.
[27] J. Lochard, I. Bogdevitch, E. Gallego, P. Hedemann-Jensen, A. McEwan, A. Nisbet, A. Oudiz, T. Oudiz, P. Strand, A. Janssens, Annals of the ICRP, 2009, 39, 1-4, 7-62.
[28] K. Arshak, O. Korostynska, Artech House Boston, 2006.
[29] R.B. Firestone, Interscience, 1996.
[30] K.F. Eckerman, R.W. Leggett, C.B. Nelson, J.S. Puskin, A.C.B Richardson, Washington, DC: Office of Radiation and Indoor Air United States Environmental Protection Agency, Report No. 13, EPA 402-R-97-014., 1998.
[31] M. Shaat, A. Abdelhady, R.F. Mahmoud, Annals of Ecology and Environmental Science, 20193, 33-39.