Document Type : Original Research Article


1 Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran

2 Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz

3 Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran

4 Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

5 Dental and periodontal research center, Tabriz university of medical sciences



Bone tissue engineering has been a fast growing area recently. It suggests a novel and talented methods for bone regeneration. The aim of the current work is to produce nanofiber scaffolds based on starch/ collagen/ polycaprolactone (PCL) biomaterials by means of an electrospinning methodology for bone tissue engineering purposes. The results showed that the developed structures have good physicochemical and interconnected properties that could be considered for bone tissues engineering. The results from the characterization specify that the nanofibers were successfully prepared with monodispersed nanosized diameter (60 nm), uniform network shaped morphology and negative surface charge (-13.5 mV). Besides, the applied method can be set up to prepare fiber-based structures using other polymeric materials. We believed that by incorporating different materials to reduce the degradation rate of the fibers it can be matched with the speed of tissue regeneration. In this case, the prepared nanofibers can be used as the membrane biomaterials for example guided bone regeneration (GBR) membrane.

Graphical Abstract

Preparation and study of starch/ collagen/ polycaprolactone nanofiber scaffolds for bone tissue engineering using electrospinning technique


[1] S. Maleki Dizaj, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, F. Lotfipour, Pharm. Sci., 2015, 20, 175-182.
[2] L. Kumar Meena, H. Rather, D. Kedaria, R. Vasita, Int. J. Pol. Mater. Pol. Bio. 2019, 1, 1-17.
[3] A. Reddi, K. Iwasa. Principle. Reg. Med., 2019, 1, 405-416.
[4] K. Adibkia, S. Yaqoubi, S. Maleki Dizaj, Pharmaceutical and Medical Applications of Nanofibers.  Novel Approaches for Drug Delivery, IGI Global, 2017, 338-63.
[5] A. Jahangiri, M. Barzegar-Jalali, Y. Javadzadeh, H. Hamishehkar, K. Adibkia. Artif. Cell. Nanomed. Biotechnol., 2017, 45, 1138-1145.
[6] L. Barghi, A. Jahangiri, J. Adv.  Chem. Pharm. Mater., 2018, 1, 26-28.
[7] A. Jahangiri, K. Adibkia, BioImpacts., 2016, 6, 1-2.
[8] A.R.C. Duarte, J. F. Mano, R. L. Reis, J. Supercrit. Fluid., 2009, 49, 279-285.
[9] Z. Hadisi, J. Nourmohammadi, J. Mohammadi, Ceramic. Inter., 2015, 41, 10745-10754.
[10] A. Ghaee, S. Bagheri-Khoulenjani, H.A. Afshar, H. Bogheiri, Compos. Part B. Eng., 2019, 1, 107339-107341.
[11] F. Mirab, M. Eslamian, R. Bagheri, Biomed. Phys. Eng. Exp., 2018, 4, 055021-0055022.
[12] F.R. Maia, V.M. Correlo, J.M. Oliveira, R.L. Reis,  Principles of Regenerative Medicine, Elsevier, 2019, 535-558.
[13] N. Alves, I. Leonor, H.S. Azevedo, R. Reis, J. Mano, J. Mate. Chem., 2010, 20, 2911-2921.
[14] K. Lin K, D. Zhang, M.H. Macedo, W. Cui, B. Sarmento, G. Shen, Adv. Function. Mater., 2019, 29, 1804943-1804944.
[15] M.C. Bottino, V. Thomas, G. Schmidt, Y.K. Vohra, T. M. G. Chu, M. J. Kowolik, Dent. Mater., 2012, 28, 703-721.
[16] X. Song X, F. Ling, L. Ma, C. Yang, X. Chen X, Compos. Sci. Tech., 2013, 79, 8-14.
[17] J. Xue J, M. He, Y. Niu, H. Liu, A. Crawford, P. Coates P, Int. J. Pharm., 2014, 475, 566-577.
[18] F. Yang, S.K. Both, X. Yang, X.F. Walboomers, J.A. Jansen, Acta. Biomater., 2009, 5, 3295-3304.
[19] M. Tallawi, D. Dippold, R. Rai, D. D'Atri , J. Roether, D. Schubert, Mater. Sci.  Eng C., 2016, 69, 569-576.
[20] C. Chu, Y. Wang, Y. Wang, R. Yang, L. Liu, S. Rung, Mater. Sci. Eng. C., 2019, 99, 73-82.
[21] N. Gómez-Cerezo, L. Casarrubios, M. Saiz-Pardo, L. Ortega, D. Pablo, I. Díaz-Güemes, Acta. Biomater., 2019, 1, 40-41.
[22] S. Maleki Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Artif. Cell. Nanomed. Biotechnol., 2016, 44, 1475-1481.
[23] B.J. Berne, R. Pecora, Courier Corporation,  2000, 1-9.
[24] S. Maleki Dizaj, F. Lotfipour, M. Barzegar-Jalali M, M.H. Zarrintan, K. Adibkia, Artif. Cell. Nanomed. Biotechnol., 2017, 45, 535-543.
[25] S. Mirzaeei, K. Berenjian, R. Khazaei, Adv. Pharm. Bulletin., 2018, 8, 21-28.
[26] X. Wang, X. Chen, K. Yoon, Environ. Sci. Technol., 2005, 39, 7684-7691.
[27] S. Wang, F. Hu, J. Li, S. Zhang, M. Shen, M. Huang M, Nanomed, Nanotechnol. Biol. Med., 2018, 14, 2505-2520.
[28] J. Song, G. Zhu, H. Gao, L. Wang, N. Li, X. Shi, Bio. Design. Manufactur., 2018, 1, 254-264.
[29] S. Maleki Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia,  J. Drug. Deliv. Sci. Technol., 2016, 35, 16-23.
[30] G.L. Re, F. Lopresti, G. Petrucci, R. Scaffaro, Micron., 2015, 76, 37-45.
[31] S.T. Ho, D.W. Hutmacher,  Biomater., 2006, 27, 1362-1376.
[32] J. Sheng, Y. Li, X. Wang, Y. Si, J. Yu, B. Ding, Sep. Purif.  Technol., 2016, 158, 53-61.
[33] P.V. Kolluru, J. Lipner, W. Liu, Y. Xia, S. Thomopoulos, G.M. Genin, Acta. Biomate., 2013, 9, 9442-9450.