Document Type: Original Research Article

Authors

Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

10.33945/SAMI/ECC.2020.3.2

Abstract

Recently, phyto nanotechnology has proposed new methods for the biosynthesis of nanoparticles and is also an eco-friendly, stable, rapid, simple, and cost-effective method. The present study reported the green synthesis of Zn nanoparticles (Zn NPs) by Taxus baccata extract, and the performance of them was tested against three types of bacteria and a type of cancer cells. These experiments are designed in a fully compatible environment. In order to evaluate effective parameters, Ultraviolet-visible (UV–vis) spectroscopy was used. In addition we had a comparative study of the performance of synthesized nanoparticles on bacteria, and a comparative study on the pure extract of this plant as an anticancer agent along with biosynthesized Zn nanoparticles. The SEM and FESEM results revealed hexagonal structure with the particle size of 20 nm. TEM analysis of the synthesized nanoparticles showed hexagonal particles with an average size of 20-25 nm. FTIR analysis confirmed the reduction of functional groups, Alkaloids, corresponding of synthsis Zn nanoparticles from their salt solution. The antibacterial activity of Taxus baccata extract, Zn nanoparticles, and zinc nitrate solution was tested against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Anticancer activity of Taxus baccata extract, zinc nitrate solution and synthesized Zn nanoparticles on cancer cells was assessed by Breast cancer cell line MCF-7. The results showed that the synthesized Zn nanoparticles using plant leaf extract had strong anti-cancer activity on MCF-7 cells. On the other hand, the synthesized metal nanoparticles had no effect on the three types of bacteria.

Graphical Abstract

Keywords

[1] P.V. Rao, SH. Gan, Curr Drug Metab, 2015, 16, 371-375.

[2] M. Noruzi, Bioprocess Biosyst. Eng., 2015, 38, 1-13.

[3] D. Suresh, R.M. Shobharani, P.C. Nethravathi, M.A. Pavan-Kumar, H. Nagabhushana, Spectrochim Acta A Mol Biomol Spectrosc, 2015, 141, 128-134.

[4] H. Duan, D. Wang, Y. Li, Chem. Soc. Rev., 2015, 44, 78-92.

[5] S.S. Ashtaputre, A. Deshpande, S. Marathe, M.E. Wankhede, J. Chimanpure, R. Pasricha, J. Urban, S.K. Haram, S.W. Gosavi, S.K. Kulkarni, Pramana J. Phys., 2005, 65, 615-620.

[6] R. Wahab, Y.S. Kim, D.S. Lee, J.M. Seo, H.S. Shin, Sci. Adv. Mater., 2010, 2, 35-42.

[7] H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, S. Pyne, A. Misra, Colloids Surf Physiochem Eng Aspects, 2009, 348, 212-216.

[8] K. Prasad, A.K. Jha, Jha. Nat. Sci. 2009, 1, 129-135.

[9] G. Sangeetha, S. Rajeshwari, R. Venckatesh, Mater Res Bull, 2011, 12, 2560-2566.

[10] C. Jayaseelan, A. Abdul Rahuman, A. Vishnu Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik, K.V. Bhaskara Rao, Spectrochimica Acta. Part A., 2012, 90, 78-84.

[11] R. Chandrasekaran, S. Gnanasekar, P. Seetharaman, R. Keppanan, W. Arockiaswamy, S. Sivaperumal, J. Mol. Liq., 2016, 219, 232-238.  

[12] M. Sundrarajan, S. Ambika, K. Bharathi, Adv. Powder Technol. 2015, 26, 1294-1299. 

[13] T.C. Taranath, B.N. Patil, Int J Mycobacteriology, 2016, 5, 197-204.

[14] P. Jamdagni, P. Khatri, J.S. Rana, J King Saud Univ Sci., 2018, 30, 168-175.

[15] J. Pulit-prociak, J. Chwastowski, A. Kucharski, M. Banach, Appl Surf. Sci., 2016, 385, 543-553.

[16] H. Mirzaei, M. Darroudi, Ceram Int., 2017, 43, 907-914.

[17] S. Jiang, Y. Zhang, Y. Zu, Z. Wang, Y. Fu, Am. J. Chin. Med., 2010, 38, 1107–1114

[18] K. Miller, B. Neilan, D.M. Sze, Recent Pat. Anticancer Drug Discov, 2008, 3, 14–19

[19] Y. Li, F. Qin, S.M. Wang, R.X. Guo, Y.F. Zhang, Y.C. Gu, Q.W. Shi, Chem. Biodivers, 2013, 10, 1729–1753

[20] S.S. Yu, Q.W. Sun, X.P. Zhang, S.N. Tian, P.L. Bo, Ying Yong Sheng Tai. Xue. Bao., 2012, 23, 2641–2647

[21] J. Zhang, Q.J. Shu, J.L. Gao, L. Zhang, Zhongguo Zhong Xi. Y.i Jie. He. Za. Zhi., 2013, 33, 805–809

[22] J. Kobayashi, H. Shigemori, Med. Res. Rev., 2002, 22, 305–328

[23] S.H. Hoke, J.M. Wood, R.G. Cooks, X.H. Li, C.J. Chang, Anal. Chem., 1992, 64, 2313–2315

[24] Z. Liang, Z. Xie, S. Lam, X. Xu, J. Sep. Sci., 2014, 37, 2322–2330

[25] Z.K. Liang, R.G. Huang, Z.S. Xie, X.J. Xu, Nat. Prod. Res., 2014, 29, 1–4

[26] Y. Zu, Y. Fu, S. Li, R. Sun, Q. Li, G. Schwarz, J. Sep. Sci., 2006, 29, 1237–1244

[27] S. Li, Y. Fu, Y. Zu, R. Sun, Y. Wang, L. Zhang, H. Luo, C. Gu, T. Efferth, J. Pharm. Biomed. Anal., 2009, 49, 81–89

[28] S. Li, Y. Fu, Y. Zu, B. Zu, Y. Wang, T. Efferth, J. Sep. Sci., 2009, 32, 3958–3966

[29] C. Yang, Y. Xiao, Z. Wang, S. Wang, L. Chen, L. Wu, G. Liu, J. Chromatogr. B., 2014, 960, 59–66

[30] H. Luo, Y.K. Nie, Y.J. Fu, Y.G. Zu, S.M. Li, W. Liu, L. Zhang, M. Luo, Y. Kong, Z.N. Li, J. Sep. Sci., 2009, 32, 192–201

[31] Z. Salari, A. Ameri, H. Forootanfar, M Adeli-Sardou., M. Jafari, M. Mehrabani, M. Shakibai, Journal of Trace Elements in Medicine and Biology., 2017, 39, 116-123.

[32] I. Sheikhshoaie, Z. Tohidiyan, Chem. Methodol., 2019, 3, 30-42.

[33] I. Sheikhshoaie, M. Sheikhshoaei, S. Ramezanpour, Chem. Methodol.,2018, 2,103-113.

[34] S. Sajjadifar, Z. Arzehgar, A. Ghayuri‏, J. Chin. Chem. Soc., 2018, 65, 205-211‏.

[35] S. Sajjadifar, Z. Arzehgar, S. Khoshpoori‏, J. Inorg. Organomet. Polym. Mater., 2018, 28 , 837-846‏.

[36] I. Sheikhshoaie, S. Davari, S. Ramezanpour, Chem. Methodol., 2018, 2, 47-55.

[37] O. Solomon, W. Rabiu-Saidu-Umar, H. Sanusi-Wara, A. Sadiq-Yakubu, M. Michael-Azubuike, M. Asugu-Mary, H. Louis, Prog. Chem.  Biochem. Res., 2018, 01(1, 1-59), 29-39.

[38] A.A. Revina, E.V. Oksentyuk, A.A. Fenin, Prot Met. 2007, 43, 554-559.

[39] A. Mirzaie, J. Med. Chem. Sci., 2018, 1, 5-8.

[40] R. Mohammadi, A. Sajjadi, J. Med. Chem. Sci., 2019, 2, 55-58.           
[41] F. Ghandehari, M. FaniMalahat, J. Med. Chem. Sci., 2018, 1, 28-30.    
[42] A. Hameed, G.R. Fatima, K. Malik, A. Muqadas, M. Fazal-ur-Rehman, J. Med. Chem. Sci.,  2018, 2, 9-16.

[43]A.A.P. Almeida, A. Farah, D.A.A. Silva, E.A. Nunan, M.B. Glória, J. Agric, Food Chem., 2006, 54, 8738-8743.

[44] F. Mohammadi, M. Yousefi, R. Ghahremanzadeh, Adv. J. Chem. A, 2019, 2, 266-275.

[45] K.S. Sindhura, T.N.V.K.V. Prasad, P.P. Selvam, O.M. Hussain, Appl Nano sci., 2014, 4, 819-827. 

[46] J. Qu, X. Yuan, X. Wang, P. Shao, Environmental Pollution. 2011, 159, 1783-1788.

[47] P. Rajiv, S. Rajeshwari, R. Venckatesh, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 112, 384-387.

[48] E. Preedia Babu, A. Subastri, A. Suyavaran, P. Lokeshwara Rao,M. Suresh Kumar,K. Jeevaratnam, C. Thirunavukkarasu, RSC Adv., 2015, 5, 62067- 62077.

[49] E. Preedia Babu, A. Subastri, A. Suyavaran, K. Premkumar, V. Sujatha, B. Aristatile, G.M. Alshammari, V. Dharuman, C. Thirunavukkarasu, Scientific Reports., 2017, 7, 4203.

[50] F. Malek Mohammadi, N. Ghasemi, J. Nanostruct. Chem.2018, 8, 93–102.

[51] K. Sri Sindhura, T.N.V.K.V. Prasad, P. Panner Selvam, O.M. Hussain, App,l Nanosci,, 2014, 4, 819–827.

[52] A.A. Revina, E.V. Oksentyuk, A.A. Fenin, Prot. Met., 2007, 43, 613–618.

[53] D.K. Badarinath, S. Samim, B. Mayuri, D. Ishita, M.P. Padmaa, A.B. Vedamurthy, Phcog. J., 2016, 8, 127-131.

[54] b. Wesam Salema, R. Deborah, 1. Leitnera, G. Franz, 1. Zingla, S. Gebhart, R. Prasslc, W. Goesslerd, J. Reidla, S. Schilda, Int. J. Med. Microbiol., 2015, 305, 85–95.

[55] G. Sangeetha, S. Rajeshwari, R. Venckatesh, Mater. Res. Bull. 2011, 46, 2560-2566.

[56] S. Gunalan, R. Sivaraj, V. Rajendran, Int. Mater., 2012, 22, 693-700.

[57] F.T. Thema, E. Manikandan, M.S. Dhlamini, M. Maaza, Material Letters, 2015, 161, 124-127.

[58] L.F.A. Anand Raj, E. Jayalakshmy, Orient.  J. Chem., 2015, 31, 51-56.

[59] N.P. Bheemanagouda, C.T. Tarikere, Int. J. Mycobacteriol., 2016, 5, 197-204.

[60] G. Bisht, S. Rayamajhi, Nanobiomedicine, 2016, 3, 3-9.

[61] S. Saranya, A. Eswari, E. Gayathri, S. Eswari, K. Vijayarani, Int. J. Curr. Microbiol. App. Sci., 2017, 6, 1834–1845.

[62] A. Sadollahkhani, I. Kazeminezhad, J. Lu, O. Nur, L. Hultman, M. Willander, RSC Adv., 2014, 4, 36940–36950.

[63] E., George, Int. J. Adv. Res. Sci. Eng., 2015, 4, 307–314.

[64] F. Namvar, S. Azizi, H.S. Rahman, R. Mohamad, A. Rasedee, M. Soltani, R.A. Rahim, Onco Targets Ther., 2016, 9, 4549–4559.

[65] T. Kaviyarasi, B. Muthulakshmi, C. Kavitha, Int. J. Chem. Technol. Res., 2017, 10, 344–348.

[66] J. Zhou, N.S. Xu, Z.L. Wang, Adv. Mater., 2006, 18, 2432-2435.

[67] E. Ho, Zinc deficiency, J. Nutr. Biochem., 2004, 15, 572-8.

[68] S.N. Sinha, D. Paul, Spectrosc. Lett., 2015, 48, 600-604.

[69]  Z. Oruç, M. Ergüt, D. Uzunoğlu, A. Özer, J. Environ. Chem. Eng., 2019, 7,  103231.

[70]  T. Zhu, T. YuWu, J. AoRen, S. JianQian, Y. Li, W. TingSu, D. FengZou, Q. YunLi, J. Yang,  Inorganica Chim. Acta, 2019, 487, 70-75.

[71] N. Pauzi, N. MatZain, N.A. AhmadYusof, Proceedings of the 10th National Technical Seminar on Underwater System Technology, 2018, 538, 541-546.

[72]  M. Geravand, F. JamaliSheini,  Adv. Powder Technol., 2019, 30, 347-358.

[73] P.T. Phong, P.H. Nam, N.X. Phuc, B.T. Huy, L.T. Lu, D.H. Manh, In-Ja Lee, Metall. Mater. Trans., 2019, 50, 1571–1581.

[74] H.BinduDuvuru, S.K. Alla, S.K.Shaw, Sh. SinghMeena, N. Gupta, B.B.V.S. VaraPrasad, M.M. Kothawale, M.K. Kumar, N.K. Prasad, Ceram. Int., 2019, 45, 16512-16520.

[75]  N.D. Krupa, A.N. Grace, V. Raghavan, Institu. Eng. Technol., 2019, 13, 510 – 514.

[76] H.Y. Chai, S.M. Lam, J.Ch. Sin, Mater.Letters, 2019, 242, 103-106.

[77] G.Sharmila, M. Thirumarimurugan, Ch. Muthukumaran, Microche. J., 2019,145,  578-587.

[78] S. TaghaviFardood, A. Ramazani, F. Moradnia, Z. Afshari, S. Ganjkhanlu, F. YekkeZare, Chem. Methodol., 2019, DOI: 10.33945/SAMI/CHEMM.2019.6.1.