Document Type: Original Research Article

Authors

1 Ph.D. Student of Chemical engineering, Department of Chemical engineering Mahshahr Branch,Islamic Azad University,Mahshahr,Iran

2 Department of Chemical engineering Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

3 Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran

10.33945/SAMI/ECC.2020.3.3

Abstract

The interfacial tension rate is an important factor in the kinetic study of gas hydrate formation. In this study, the interfacial tension between CO2 hydrate and water was calculated at various temperatures, pressures and solution concentrations a through measurement of the induction time according to the Classical Nucleation Theory (CNT). Experimental data for pure water showed that, at constant temperature, with increasing pressure, the interfacial tension decreases from 2.92 to 1.67 mN/m, and at constant pressure with increasing temperature, interfacial tension increases from 3.92 to 4.7 mN/m. At constant temperature, with increasing TBAB concentration from 1% to 3% by weight, the induction time decreases from 60 to 36 seconds. At higher temperatures, addition of SDS 500 ppm decreased the induction time and interfacial tension from 4.61 to 2.32 m N/m. Finally, the relationship of nucleation intensity and with the super saturation was obtained by fitting the experimental data. According to equations and graphs, the nucleation intensity is a function of temperature.

Graphical Abstract

Keywords

[1] S. Li, S. Fan, J. Wang, X. Lang, Y. Wang, Chin. J. Chem. Eng., 2010, 18, 202-206.

[2] E.D. Sloan, C.A. Koh, third ed. CRC Press. Taylor and Francis Group, Boca Raton, 2008.

[3] J. Zheng, K. Bhatnagar, M. Khurana, P. Zhang, B.Y. Zhang, P. Lingaa, Appl. Energy, 2018, 217, 377–389.

[4] W. Lee, Y.S. Kim, S.P. Kang, Chem. Eng. J., 2017, 331, 1-7.

[5] O. Antunes, Carollina de M. Molinari, N. Marcelino, A. Celina Kakitani, Moisés,  R. Morales, E. M.S. Rigoberto, K. Amadeu, Braz. J. Chem. Eng., 2018, 35, 265-274.

[6] M. Manteghian, S.M. Mousavi Safavi, A. Mohammadi, Chem. Eng. J., 2012, 2179, 379-384.

[7] Z. Bohstrom, K.P. Lillerud, J. Cryst. Growth, 2018, 498, 154-159.

[8] A. Yamasaki, M. Wakatsuki, H. Teng, Y. Yanagisawa, K. Yamada, Energy, 1999, 25,  85-96.

[9] R. Larsen, C.A. Knight, E.D. Sloan, Fluid Phase Equilibrium, 1998, 150, 353–360.

[10] M.T. Mota-Martinez, S. Samdani, A.S. Berrouk, M.C. Kroon, C. J. Peters, Ind. Eng. Chem. Res., 2014, 53, 20032–20035.

[11] N.S. Yuritsyn, A.S. Abyzov, V.M. Fokin, J. Non-Cryst. Solids, 2018, 498, 42–48.

[12] A.M. Rodrigues, D.R. Cassar, V.M. Fokin, E.D. Zanotto, J. Non-Cryst. Solids, 2017, 479, 55–61.

[13] J. Orava, A.L. Greer, J. Non-Cryst. Solids, 2016, 451, 94–100.

[14] A. Azimi, M. Mirzaei, Chem. Eng. Res. Des., 2016, 111, 262-268.

[15] H. Mozaffar, R. Anderson, B. Tohidi, Fluid Phase Equilibrium, 2016, 425, 1-8.

[16] Z. Rezvani, K. Nejati, S. Alizade, S. Samuey, J. Iran. Chem. Soc., 2016, 4, 347-358

[17] S. Babaee, H. Hashemi, A.H. Mohammadi, P. Naidoo, D. Ramjugernath, J. Chem. Thermodyn., 2017, 116, 121–129.

[18] A. Azimi, M. Mirzaei, S.M. Tabatabaee Ghomshe, Bulg. Chem. Commun., Special Issue D, 2015, 47, 49 – 55.

[19] A. Li, L. Jiang, S. Tang, Energy, 2017, 134, 629-637.

[20] M. Manteghian, A. Azimi, J. Towfighi, J. Chem. Eng. Jpn., 2011, 44, 936-942.  

[21] J.W. Mullin, Crystallization. Butterworth– Heinemann, Oxford, 2001.

[22] B.Y. Zhang, Q. Wu, D. Sun, J. China Univ. Min. Technol., 2008, 18, 18-21.

[23] A. Rasoolzadeh, J. Javanmardi, A. Eslamimanesh, A.H. Mohammadi, J. Mol. Liq., 2016, 221, 149–155.

[24] S. Ghader, M. Manteghian, M. Kokabi, R. Sarraf, Chem. Eng. Technol., 2007, 30, 1-6.

[25] H. Luo, C.Y. Sun, Q. Huang, B. Z. Peng, G. J. Chen, J. Colloid Interface Sci., 2005, 297, 266–270.

[26] K. Fukuzawa, K. Watanabe, K. Yasuda, R. Ohmura, J. Chem. Thermodyn., 2017, 119, 20-25.

[27] H. Akiba, R. Ohmura, J. Chem. Thermodyn., 2016, 97, 83-87.

[28] A. Mersmann,      J. Cryst. Growth, 1994, 147, 181-193.

[29] P. Bennema, O. Sohnel, J. Cryst. Growth, 1990, 102, 547-556.

[30] E. Teymoori, A. Davoodnia, A. Khojastehnezhad, N. Hosseininasab, Iran. Chem. Commun. 2019, 7, 271-282

[31] A. Samimi., S. Zarinabadi, Aust. J. Basic Appl. Sci., 2011, 5, 752-756

[32] A. Samimi., S. Zarinabadi, Aust. J. Basic Appl. Sci., 2011, 5, 741-745

[33] A. Samimi., S. Zarinabadi, J. Fundam. Appl. Sci., 2016, 8, 1160-1172

[34] S. ZarinabadiA. Esfandiyari., S.A, Khodami.A. Samimi., J. Fundam. Appl. Sci., 2016, 8, 1133-1149

[35] S. Janitabar Darzi., N. Mohseni., Adv. J.Chem. A, 2019, 2, 165-174

[36] A. Asweisi, R, Hussein, N, Bader, R,  Elkailany, Adv. J. Chem. A, 2020, 3, In press.

[37] F. Ahmad, Adv. J. Chem. A., 2020, 3, 70-93

[38] A, Samimi, S. Zarinabadi, A. Shahbazi Kootenaei, A. Azimi, M. Mirzaei,  J. Chem. Rev., 2019, 1, 164-182

[39] H. Hamidi, M.M. Heravi, M. Tajbakhsh, M. Shiri, H.A. Oskooie, S.A. Shintre, N.A. Koorbanally, J. Iran. Chem. Soc., 2015, 12, 2205-2212

[40] M.M. Heravi, K.H. Bakhtiari, M.H. Tehrani, N.M. Javadi, H.A. Oskooie, Arkivoc., 2006, (xvi), 16-22.