Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Review Article

Authors

1 Department of Chemistry, Qaemshahr branch, Islamic Azad University, Qaemshahr, Iran

2 Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

3 Department of Biomaterials, College of Natural Resources, North Carolina State University, United States

4 Department of Chemistry Islamic Azad University, Ghaemshahr Branch, Mazandaran, Iran

10.33945/SAMI/ECC.2020.3.6

Abstract

A new Schiff base catalyst (Pd(II) chemically mounted on the cellulose nanocrystals surface (CNC-APTES-IS-Pd) was developed for Ulmann and Suzuki cross-coupling reactions. The catalyst was applied for Ulmann reaction using s series of aryl halide and phenol derivatives in DMSO and preparation of biaryls via Suzuki C-C reactions between aryl halides and phenyl boronic acid. The Catalyst was characterized by FT-IR, XRD, SEM, ICP-AES and TGA techniques. The catalyst demonstrated high reaction efficiency with more than 90% reaction yield. The catalyst indicated good performance after several times recovery and reuse.

Graphical Abstract

Cellulose nanocrystals-Palladium, a novel recyclable catalyst for coupling reaction

Keywords

[1] Y. Ano, M. Tobisu, N. Chatani, J. Am. Chem. Soc., 2011, 133, 12984-12986.
[2] M. Ghiaci, M. Zarghani, A. Khojastehnezhad, F. Moeinpour, RSC Adv., 2014, 4, 15496-15501.
[3] M. Ghiaci, M. Zarghani, F. Moeinpour, A. Khojastehnezhad, Appl. Organomet. Chem., 2014, 28, 589-594.
[4] F. Ullmann, J. Bielecki, Ber. Dtsch. Chem. Ber., 1901, 34, 2174–2185.
[5] R.C. Larock, Comprehensive Organic Transformation Wiley-VCH; New York: 1999.
[6] K. Nejati, S. Ahmadi, M. Nikpassand, P.D.K. Nezhad, E. Vessally, RSC Adv., 2018, 8, 19125-19143.
[7] J. Jo, Q. Tu, R. Xiang, G. Li, L. Zou, K.M. Maloney, H. Ren, J.A. Newman, X. Gong, X.Bu, Organometallics. 2018, 38, 185-193.
[8] A.F.P. Biajoli, C.S. Schwalm, J. Limberger, T.S. Claudino, A.L. Monteiro, J. Braz. Chem. Soc., 2014, 25, 2186-2214.
[9] W.W. Shan, F.H. Zhu, L. Zhang, Appl Mech Mats., 2012,117, 1207-1210.
[10] J.C. Torres, A.C. Pinto, S.J. Garden, Tetrahedron. 2004, 60, 9889-9900.
[11] G. Bringmann, R. Walter, R. Weirich, Angew. Chem. Int. Edn., 1990, 29, 977-991.
[12] B. Yuan, Y. Pan, Y. Li, B. Yin, H. Jiang, Angew. Chem. Int. Edn., 2010, 49, 4054-4058.
[13] W.A. Herrmann, K. Öfele, S.K. Schneider, E. Herdtweck, S.D. Hoffmann, Angew. Chem. Int. Ed., 2006, 45, 3859-3862.
[14] M. Keyhaniyan, A. Shiri, H. Eshghi, A. Khojastehnezhad, New J. Chem., 2018, 42, 19433-19441.
[15] S. Kotha, K. Lahiri, K. Dhurke, Tetrahedron. 2002, 58, 9633-9695.
[16] J.P. Corbet, G. Mignani, Chem. Rev., 2006, 106, 2651–2710.
[17] J. Hassan, S M.évignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev., 2002, 102, 1359–1469.
[18] C. Baillie, W. Chen, J. Xiao, Tetrahedron Lett., 2001, 42, 9085-9088.
[19] R.C. Smith, R.A. Woloszynek, W. Chen, T. Ren, J.D. Protasiewicz, Tetrahedron lett., 2004, 45, 8327-8330.
[20] T. Kang, Q. Feng, M. Luo, Synlett. 2005, 2305–2308.
[21] G. Lázaro, F.J. Fernández-Alvarez, M. Iglesias, C. Horna, E. Vispe, R. Sancho, F.J. Lahoz, M. Iglesias, J.J. Pérez-Torrente, L.A. Oro, Catal. Sci& Technol., 2014, 4, 62–70.
[22] N. Jamwal, R.K. Sodhi, P. Gupta, S. Paul, Int. J. Biol. Macromol., 2011, 49, 930–935.
[23] D. Klemm, B.Heublein, H.P. Fink, A. Bohn, Angew. Chem. Int. Ed., 2005, 44, 3358–3393.
[24] M.A. Khalilzadeh, A. Hosseini, A. Pilevar, Eur. J. Org. Chem., 2011, 1587-1592.
[25] M.A. Khalilzadeh, H. Keipour, A. Hosseini, D. Zareyee, New J. Chem., 2014, 38, 42-45.
[26] E. Feese, H. Sadeghifar, H.S. Gracz, D.S. Argyropoulos, R.A. Ghiladi. Biomacromolecules. 2011, 12, 3528-3539.
[27] N.Y. Baran, T. Baran, A. Menteş, Appl. Catal. A., 2017,  531-44.
[28] K. Dhara, K. Sarkar, D. Srimani, S.K. Saha, P. Chattopadhyay, A. Bhaumik. Dalton Trans. 2010, 39, 6395–6402.
[29] C. Demetgul, Carbohydr. Polym., 2012, 89, 354–361.
[30] Y. Li, L. Xu, B. Xu, Z. Mao, H. Xu, Y. Zhong, L. Zhang, B. Wang, X.  Sui, ACS Appl. Mater. Interfaces., 2017, 9, 17155-17162.
[31] H. Keipour, A. Hosseini, A. Afsari, R. Oladee, M.A. Khalilzadeh, T. Ollevier, Can. J. Chem., 2015, 94, 95-104.
Y. Kakinuma, K. Moriyama, H. Togo, Synthesis. 2013, 45, 183-188.
[33] M. Waheed, N. Ahmed, Synthesis. 2017, 49, 4372-4382.
[34] R. Rahil, S. Sengmany, E. Le Gall, E. Leonel, Synthesis. 2018, 50, 146-154.
[35] M. Planellas, R. Pleixats, A. Shafir, Adv. Syn Catal., 2012, 354, 651-662.
[36] J.M. Hammann, F.H. Lutter, D. Haas, P. Knochel, Angew. Chem., 2017, 129, 1102-1106.
[37] D. Qiu, H. Meng, L. Jin, S. Wang, S. Tang, X. Wang, F. Mo, Y. Zhang, J. Wang, Angew. Chem. Int. Ed., 2013, 52, 11581-11584.
[38] S. Ren, J. Zhang, J. Zhang, H. Wang, W. Zhang, Y. Liu, M. Liu, Eur. J. Org Chem., 2015, 2015, 5381-5388.
[39] J. Tang, A. Biafora, L.J. Goossen, Angew. Chem. Int. Ed., 2015, 54, 13130-13133.
[40] T. Miao, L. Wang, Tetrahedron Lett., 2007, 48, 95-99.
[41 J. Niu, H. Zhou, Z. Li, J. Xu, S.Hu, J. org. chem., 2008, 73, 7814-7817.
[42] N. Iranpoor, H. Firouzabadi, A. Rostami, Appl. Organomet. Chem., 2013, 27, 501-506.
[43] H-J. Cristau, P.P. Cellier, S.Hamada, J-F. Spindler, M. Taillefer, Org. lett., 2004, 6, 913-916.
[44] F. Rajabi, W.R. Thiel, Adv. Synth.Catal., 2014, 356, 1873-1877.
[45] S. Yaşar, S. Çekirdek, İ. Özdemir, Heteroatom Chem., 2014, 25, 157-162.
[46] X. Wang, P. Hu, F. Xue, Y. Wei, Carbohydrpolym. 2014, 114, 476-483.
[47] B. Li, Z. Guan, W. Wang, X. Yang, J. Hu, B. Tan, T. Li, Adv Mater., 2012, 24, 3390-3395.