Document Type: Original Research Article

Authors

1 Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

2 Department of Chemistry, Quchan Branch, Islamic Azad University, Quchan, Iran

10.33945/SAMI/ECC.2020.3.8

Abstract

A rapid screening assay for the measurement of octanol-water partition coefficients (logP) of pharmaceuticals such as quinolines, quinolones and fluoroquinolones compounds were developed by using quantum chemical calculations. In this paper, we report the logP of the pharmaceutical derivatives compounds that determined by the calculation of the difference in the solvation free energies in water-octanol using the thermodynamic integration method. The logP values calculated in this method are closer to the experimental values compared to other ab initio methods. Solvation free energy in water and octanol, free energy of cavity formation in water and Henry’s constants, and some other parameters are determined at the density functional theory (DFT) and Hartree-Fock (HF) level with 6-31++G** basis set. Moreover, surface area, mass, refractivity, volume, polarizability have been calculated for some of the compounds with the same levels.

Graphical Abstract

Keywords

[1] S. Richter, C. Parolin , M. Palumbo,G. Palu, Curr Drug Targets Infect Disord., 2004, 4, 111-116.

[2] A. Dalhoff , F.J. Schmitz, Eur J Clin Microbiol Infect Dis., 2003, 22, 203-221.

[3] V. Ricci, L. Piddock, Antimicrob. Age. Chemother., 1998, 42, 2956-2960.

[4] S. Heeb, M.P. Fletcher, S.R. Chhabra and et al, FEMS Microbiol Rev., 2011, 35, 247-274.

[5] M. M. Neuhauser, R.A. Weinstein, R. Rydman and et al. JAMA., 2003, 289, 885-888.

[6] H. Liu, S.G. Mulholland, Am J Med., 2005, 118, 14S-20S.

[7] T. Lewis, J. Cook, J Athl Train., 2014, 49, 422-427.

[8] D.C. Hooper, Emerg Infect Dis., 2001, 7, 337-341.

[9] J.A. Katie, J.K. Robert, O. Neil,  Biochemistry., 2014, 53, 1565-1574.

[10] A.H. Abadi, G.H. Hegazy, A.A.E. Zaher, Bioorg. Med. Chem., 2005, 13, 5759-5765.

[11] B.N. Acharya, D. Thavaselvam, M.B. Kaushik, Med. Chem. Res., 2008, 17, 487-494.

[12] H. Assefa, S. Kamath, J.K. Buolamwini, J. Comput. Aided Mol. Des., 2003, 17, 475-493.

[13] A.P. Gorka, A. Dios, P.D. Roepe, J Med Chem., 2013, 56, 5231-5246.

[14] M. Shiri, M.M. Heravi, H. Hamidi, M.A. Zolfigol, Z. Tanbakouchian, JICS., 2016, 13, 2239-2246.

[15] Y. Kwon, Partition and Distribution Coefficients, 2001. Kluwer Academic/Plenum, New York.

[16] W. Lewgowd, A. Stanczaka, Z. Ochocki, K. Rzeszowska-Modzelewska, Acta Pol Pharm., 2007, 64, 195-200.

[17] D. Cronin, T. Mark, Current Computer-Aided Drug Design., 2006, 2, 405-413.

[18] J. Sangster, Octanol–Water Partition Coefficients: Fundamentals and Physical Chemistry, 1997.  John Wiley & Sons, Chichester.

[19]  L. Shargel, W.P. Susanna, A.B. Yu, Physiological Drug Distribution and Protein Binding". Applied Biopharmaceutics & Pharmacokinetics, 2012. McGraw-Hill, New York.

[20] M.A. Cabrera Perez, H. Gonzalez Diaz, C. Fernandez Teruel, J.M. Pela Delfina, M. Bermejo Sanz, Eur J Pharm Biopharm.2002, 53, 317-325.

[21] C. Nieto-Draghi, G. Fayet, B. Creton and et al, Chem Rev., 2015, 24, 13093-13164.

[22] D.J. Abraham, Burger’s medicinal chemistry and drug discovery, 2003. John Wiley & Sons, New Jersey.

[23] Z. Bayat, J. Movaffagh, J Phys Chem A., 2010, 84, 2293-2299.

[24]  C. Duda-Seiman , R.A. Hughes, R. Nuniu, D. Ciubotariu , N. Suceveanu, J Med Pharm., 2004, 144-149.

[25] C. Duda-Seiman , D. Duda-Seiman, M.V. Putz, D. Ciubotariu, Digest Journal of  Nanomaterials and Biostructures., 2007, 2, 207-219.

[26] C. Duda-Seiman , D. Duda-Seiman, D. Dragos, M. Medeleanu, V. Careja, M. V. Putz, A.M. Lacrama, A. Chiriac, R. Nutiu, D. Ciubotariu, Int J Mo Sci., 2006, 7, 537-555.

[27] W.L. Jorgensen, E.M. Duffy, Adv Drug Deliv Rev., 2002, 54, 355-366.

[28] F. Kobarfard, A. Khalaj , F. Daryaei, Z. Ardeshir Larijany, S. Rezaei, J Pharm Sci., 2008, 16, 55-59.

[29] M. Haeberlein , T. Brinck , J Chem Soc Perkin Trans., 1997, 2, 289-294.

[30] H. Chuman, A. Mori, H. Tanaka, Anal Sci., 2002, 18, 1015- 1020.

[31] P.J. Taylor, in: C.A. Ramsden (ed), Quantitative drug design, 1990. Pergamon Press, Oxford.

[32] Reviews in Computational Chemistry (Eds K.B. Lipkowitz, D. Boyd), 1997. Wiley-VCH, New York.

[33] C. Hansch, T. Fujita, J Am Chem Soc., 1964, 86, 1616-1626.

[34] I. Moriguchi, Chem Pharm Bull., 1975, 23, 247-257.

[35] C.C.J. Roothaan, Rev. Mod. Phys., 1951, 23, 69-89.

[36] M.J. Frisch, G.W. Trucks,  H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.A. Pople, Gaussian, Inc., Wallingford CT 2009.

[37] S.H. Hussein-Mohamed, A.A. Sayed,  J. Chem. Rev., 2019, 1, In press;

[38] M. Islam, A. Kumer, N. Sarker, S. Paul, A. Zannat, Adv. J. Chem. A., 2019, 2, 316-326.

[39] Z. Javanshir, S. Jameh-Bozorghi, P. Peyki, Adv. J. Chem. A., 2018, 1, 117-126.

[40] Drugbank [https://www. drugbank. ca/drugs/ DB00365].

[41] A.V. Rudraraju, P.N.A. Amoyaw, T.J. Hubin, M.O. Faruk Khan, Pharmazie. 2014, 69, 655-662.

[42] R. Gayatri, C. Nagasuma, S. Narayanaswamy, Malar J., 2017, 16, 290-298.

[43] L.R. Danna, K.E. Steven, M.R. Christopher, Int J Pharm., 1992, 88, 379-389. 

[44] W. Schmitt, Toxicol in Vitro., 2008, 22, 457-467. 

[45] M. Angeles, C. Sanchez, M. Rambla-Alegre, S. Carda-Broch, J. Esteve-Romero, J Liq Chromatogr Related Technol., 2010, 23, 513-525.

[46] H. Yamaguchi, I. Yano, H. Saito, K. Inui, J Pharmacol Exp Ther., 2002, 300, 1063- 1069.

[47] G. Szasz, Int J Pharm., 1992, 79, 89-96.

[48] K. Takacs-Novak, A. Avdeef, J Pharm Biomed Anal., 1996, 14, 1405-1413.

[49] A.A. C.C. Pais, A. Sousa, M.E. Eusebio, J.S . Redinha, J Phys. Chem. Chem. Phys., 2001, 3, 4001-4009.

[50] J.A. Platts, M.H. Abraham, A. Hersey, D. Butina, J Chem Inf Comput Sci., 1999, 39, 835-845.

[51] A. Kumer, N. Sarker, S. Paul, A. Zannat, Adv. J. Chem. A., 2019, 2, 190-202.