Web of Science (Emerging Sources Citation Index)

Document Type: Original Research Article

Authors

1 Department of Physics, Iran University of Science and Technology, Tehran16846-13114, Iran

2 Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran

10.33945/SAMI/ECC.2020.4.4

Abstract

Agar/Fe3O4nanocomposites were synthesized in the presence of an external magnetic field (~ 0.4 Tesla) and their characteristics were compared to the samples synthesized without considering the external magnetic field. In this study, we used Fe2+ and Fe3+ for synthesizing Fe3O4 magnetic nanoparticles in the presence of agar as a polymeric additive, by co-precipitation technique. Vibrating sample magnetometer (VSM) analysis of the samples revealed the saturation magnetism as 33.92 emu/g and 38.92 emu/g for the synthesized samples in the absence and presence of external magnetic field, respectively. The results of scanning electron microscopy (SEM) images showed that the aggregation of magnetic nanoparticles is related to the magnetic property. Magnetic dipole alignment was increased by the sample synthesized in the external magnetic field. The Fourier transforms infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) pattern were also applied to characterize the magnetic nanocomposites.

Graphical Abstract

Keywords

[1] G. Reiss, Günter, A. Hütten, Handbook of nanophysics. CRC press, 2016, 28-40.

[2] H. Shokrollahi, Journal of Magnetism and Magnetic Materials, 2017, 426, 74-81.

[3] S. Noh, S. HoMoon, T.H. Shin, Y. Lim, J. Cheon, Nano Today, 2017,13, 61-76.

[4] K.K. Kefeni, T.A.M. Msagati, B.B. Mamba, Materials Science and Engineering B, 2017, 215, 37–55

[5] E. Tombácz, R. Turcu, V. Socoliuc, L. Vékás, Biochem.Biophys. Res.Commun., 2015, 468, 442-453.

[6] H. Lee, T-H. Shin, J. Cheon, R. Weissleder, Chem. Rev., 2015, 115, 10690- 10724.

[7] S.A. Majetich, T. Wen, O.T. Mefford, MRS Bull., 2013, 38, 899-903.

[8] L.T. Thu Huong, N.H. Nam, D.H. Doan, H.T. My Nhung, B.T. Quang, P.H. Nam, P.Q. Thong, N.X. Phuc, H.P. Thu, Mater.Chem. Phys., 2016, 172, 98–104.

[9] (a) M. Arefi, D. Saberi, M. Karimi, A. Heydari, ACS Comb. Sci., 2015, 17, 341–347; (b) E. Rezaee Nezhad, F. Heidarizadeh, S. Sajjadifar, Z. Abbasi, Journal of Petroleum Engineering, 2013, 2013, 1-5.

[10] Y.T. Prabhu, K.V. Rao, B.S. Kumari, V. Sesha, S. Kumar, T. Pavani, Int. Nano Lett., 2015, 85–92.

[11] N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon, J. Cheon, Chem. Rev., 2015, 115, 10637–10689.

[12] A.B. Chinen, C.M. Guan, J.R. Ferrer, S.N. Barnaby, T.J. Merkel, C.A. Mirkin, Chem. Rev., 2015, 115, 10530–10574.

[13] D.L. Zhao, X.X. Wang, X.W. Zeng, Q.S. Xia, J.T. Tang, J.Alloy.Compd., 2009, 477, 739–743.

[14] G. Reiss, A. Hutten, Nat. Mater., 2005, 4, 725-726.

[15] O.U. Rahman, S.C. Mohapatra, S. Ahmad, Mater. Chem. Phys., 2012, 132, 196–202.

[16] S. Bagheri, N. MuhdJulkapli, J. Magn. Magn. Mater., 2016, 416, 117–133.

[17] B.K. Kuanr, S.R. Mishra, L. Wang, D. Delconte, D. Neupane, V. Veerakumar, Z.Celinski, Mater. Res. Bull., 2016, 76, 22–27.

[18] T.F. Marinca, I. Chicinas, O. Isnard, Ceram. Int., 2013, 39, 4179–4186.

[19] J. Ghodsi, A.A. Rafati, Y. Shoja, Adv. J. Chem., A.2018, 1, 39-55.

[20] S. Kamran, N. Amiri Shiri, Chem. Methodol., 2018, 2, 23-38.

[21] S. Behrens, Nanoscale, 2011, 3, 877-892.

[22] R. Zafar, K.M. Zia, S.Tabasum, F. Jabeen, A. Noreen, M. Zuber, Int. J. Biol. Macromol. 2016, 92, 1012–1024.

[23] J. Zhu, S. Wei, M. Chen, H. Gu, S.B. Rapole, S. Pallavkar,T.C. Ho, J. Hopper, Z. Guo, Adv. Powder Technol., 2013, 24, 459–467.

[24] M. Haque, Asian J.Nanosci. Mater., 2018, 2, 131-148.

[25] A. Maleki, Z. Hajizadeh, H. Abbasi, Carbon Lett., 2018, 27, 42–49.

[26] M. Fani, F. Ghandehari, M. Rezaee, J. Med. Chem. Sci., 2018, 1, 28-30.

[27] A. Ghorbani-Choghamarani, M. Mohammadi, Z. Taherinia, J. Iran. Chem. Soc., 2019, 16, 411–421.

[28] Z. Hajizadeh, A. Maleki, Mole. Catal., 2018, 460, 87–93.

[29] A. Hameed, G.R. Fatima, K. Malik, A. Muqadas, M. Fazal-ur-Rehman,  J. Med. Chem. Sci., 2019, 2, 9-16.

[30] A. Maleki, Z. Hajizadeh, R. Firouzi-Haji, Microporous Mesoporous Mater., 2018, 259, 46–53.

[31] A.P.  Kumar, K. Sudhakara, B.P. Kumar, A. Raghavender, S. Ravi, D. NegussaKeniec, Y-I. Lee, Asian J.Nanosci. Mater., 2018, 1, 172-182.

[32] A. Mirzaie, J. Med. Chem. Sci., 2018, 1, 5-8.

[33] A. Maleki, R. Firozi-Haji, Z. Hajizadeh, Int. J. Biol. Macromol., 2018, 116, 320–326.

[34] S. Deljoo, N. Rabiee, M. Rabiee, Asian J. Nanosci. Mater., 2019, 2, 66-91.

[35] R. Mohammadi, A. Sajjadi, J. Med. Chem. Sci., 2019, 2, 55-58.

[36] A. Maleki, J. Rahimi, Z. Hajizadeh, M. Niksefat, J. Organomet. Chem., 2018, 881, 58-65.

[37] S. Gupta, M. Lakshman, J. Med. Chem. Sci., 2019, 2, 51-54.

[38] C. Zhang, T.F. Garrison, S.A. Madbouly, M.R. Kessler, Prog. Polym. Sci., 2017, 71, 91-143.

[39] M.H. Nasirtabrizi, S.J. Mousavi, Adv. J. Chem. A., 2018, 1, 56-65.

[40] R.W. Rhim, P.K.W. Ng, Crit. Rev. Food Sci. and Nutr., 2007, 47,411–433.

[41] Y. Wu, F. Geng, P.R. Chang, J. Yu, X. Ma, Carbohydr. Polym., 2009, 76, 299–304.

[42] (a) T.D. Phan, F. Debeaufort, D. Luu, A. Voilley, J. Agric. Food Chem., 2005, 53, 973–981; (b) S. Sajjadifar, International Journal of ChemTech Research, 2013, 5, 385-389.

[43] A. Jegan, A. Ramasubbu, S. Saravanan, S. Vasanthkumar, Int.J.Nano Dim., 2011, 2, 105-110.