Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Department of Chemistry, Ardebil Branch, Eslamic Azad University‌, Ardebil‌, Iran‌

2 Department of Chemistry, Payame Noor University‌, Ardebil, Iran‌

10.33945/SAMI/ECC.2020.4.6

Abstract

In the presented study, a new and efficient sorbent for the removal of Everzol Red 3BS dye from aqueous solutions was prepared by immobilization of 2,4-­dinitrophenyl hydrazine (DNPH) on γ-alumina (γ-Al2O3) ­nanoparticles coated with sodium dodecyl sulfate (DNPH­­­-­γ-alumina). The structure and morphology of the produced sorbents were characterized by Fourier Transform Infrared (FT-IR) and Scanning electron microscopy (SEM). Batch studies were performed to study the effect of various experimental parameters such as contact time, initial dye concentration, adsorbent dose and solution pH on the adsorption process. The experimental data were analyzed using the Langmuir and Freundlich isotherm models. The isotherm studies showed that the adsorption experimental data were fitted by Langmuir isotherm model. The maximum monolayer adsorption capacity (qmax) ­obtained from the Langmuir model was 10.21 and 86.96 mg/g for Everzol Red 3BS dye on nano-γ-alumina and DNPH modified γ-alumina nanoparticles (DNPH­­­-­γ-alumina), respectively. Meanwhile, thermodynamic parameters such as Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were evaluated. We found out that ∆G°, ∆H°, and ∆S° for nano-γ-alumina and DNPH modified γ-alumina nanoparticles (DNPH­­­-­γ-alumina) are -11.07 and -4.84 kJ/mol, 1.40and 3.55 kJ/mol, and 0.037 and 0.025 kJ/molK, respectively. The negative values of Gibbs free energy change (∆G°) ­show that the adsorption was feasible as the spontaneous and positive values of enthalpy change (∆H°) confirm the endothermic adsorption­­. The obtained results indicate that γ-alumina (γ-Al2O3) ­nanoparticles modified with 2, 4-dinitrophenyl hydrazine (DNPH- γ-alumina) can be used as an efficient adsorbent material for the adsorption of anionic dyes from aqueous solutions.

Graphical Abstract

Modified nano-γ-alumina with 2, 4-‌dinitrophenyl hydrazine as an efficient adsorbent for the removal of everzol red 3BS dye from aqueous solutions

Keywords

[1] A. Debrassi, A.F. Correa, Th. Baccarin, N. Nedelko, A. S´lawska-Waniewska, K. Sobczak, P, Dłuz˙ewski, J.M. Greneche, C.A. Rodrigues, Chem. Eng. J., 2012, 183, 284-293.
[2] H. Chen, Zh. Xu, Y. Huang, Zh. Lin, Y. Zhang, Q. Wang. ICIMM, 2015, 517-521.
[3] Y. Liu, J. Li, Y. Yang, B. Li, Appl. Surf. Sci., 2015, 351, 831-839.
[4] G.Z. Kyzas, J. Fu, K.A. Matis, Materials, 2013, 6, 5131-5158.
[5] Y. Du, M. Pei, Y. He, F. Yu, W. Guo, L. Wang, PLOS ONE., 2014, 9, 108647.
[6] S. Ghorai, A.K. Sarkar, A.B. Panda, S. Pal, Bioresource Technol., 2013, 144, 485-491.
[7] E. Forgacsa, T. Cserha´tia, G. Oros, Environ Int., 2004, 30, 953-971.
[8] L. Jin, Q. Sun, Q. Xu, Y. Xu, Bioresour Technol., 2015, 197, 348-355.
[9] M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, J. Hazard. Mater., 2010, 177, 70-80.
[10] (a) L. Sheikhian, Desalin Water Treat., 2015, 1-7; (b) S. Sajjadifar, H. Vahedi, A. Massoudi, O. Louie, Molecules, 2010, 15, 2491-2498; (c) S. Sajjadifar, Z. Arzehgar, A. Ghayuri, Journal of the Chinese Chemical Society, 2018, 65, 205-211; (d) S. Sajjadifar, O. Louie, Journal of chemistry, 2013, 2013, http://dx.doi.org/10.1155/2013/674946; (e) S. Sajjadifar, G. Mansouri, S. Miraninezhad, Asian J. Nanosci. Mater., 2018, 1, 11-18. 
[11] J. Axelsson, U. Nilsson, E. Terrazas, T.-A. Aliaga, U. Welander, Enzyme Microb Technol, 2006, 39, 32-37.
[12] E.R. Garcí, R.L. Medina, M.M. Lozano, I.H. Pérez, M.J. Valero, A.M.M. Franco, Materials, 2014, 7, 8037-8057.
[13] M.A. Kamboh, I.B. Solangi, S.T.H. Sherazi, Sh. Memon, J. Hazard. Mater, 2011, 186, 651-658.
[14] Y.F. Lin, H.W. Chen, P.S. Chien, Ch.S. Chiou, Ch.Ch. Liu, J. Hazard. Mater, 2011, 185, 1124-1130.
[15] M. Malakootian, H. Jafari Mansoorian, A. Hosseini, N. Khanjani, Process Safety and Environmental Protection, 2015, 96, 125-137.
[16] A.R. Cestari, E.F.S. Vieira, G.S. Vieira, L.E. Almeida, J. Hazard Mater, 2006, B138 , 133-141.
[17] J. Liu, Sh. Ma, L. Zang, Appl. Surf. Sci., 2013, 265, 393-398.
[18] S. Koner, A. Pal, A. Adak, Int. J. Environ. Res., 2012, 6, 995-1006.
[19] Z. Derakhshan, M.A. Baghapour , M. Ranjbar, M. Faramarzian, Health Scope., 2013, 2,136-144.
[20] M.M. Rahman, F.A. Choudhury, M.D. Hossain, M.N.I. Chowdhury, S. Mohsin, M.M. Hasan, M.F. Uddin, N.Ch. Sarker, J Chem Eng., 2012, 27, 65-71.
[21] M. Anbia, M. Lashgari, Chem. Eng. J., 2009, 150, 555-560.
[22] H. Gao, S. Zhao, X. Cheng, X. Wang, L. Zheng, Chem. Eng. J., 2013, 223, 84-90.
[23] A. Afkhami, M. Saber-Tehrani, H. Bagheri, Desalination., 2010, 263, 240-248.
[24] N.M. Mahmoodi, Sh. Khorramfar, F. Najafi, Desalination., 2011, 279, 61-68.
[25] E. Kalkan, H. Nadarog˘lu, N. Celebi, G. Tozsin, Desalin Water Treat., 2014, 52, 6122-6134.
[26] Zh. Xu, W. Li, Zh. Xiong, J. Fang, Y. Li, Q. Wang, Q. Zeng, Desalin Water Treat., 2015, 1-12.
[27] R.D. Ch. Soltani, A.R. Khataee, M. Safari, S.W. Joo, Int Biodeter Biodegr., 2013, 85, 383-391.
[28] H. Gao, T. Kan, S. Zhao, Y. Qian, X. Cheng, W. Wu, X. Wang, L. Zheng, J Hazard Mater, 2013, 261, 83-90.
[29] (a) R.D.Ch. Soltani, A.R. Khataee, M. Safari, S.W. Joo, Int Biodeter Biodegr., 2013, 85, 383-391; (b) S. Sajjadifar, Chemical Methodologies, 2017, 1, 1-11; (c) S. Rezayati, S. Sajjadifar, Journal of Sciences, Islamic Republic of Iran, 2014, 25, 329-337; (d) H. Veisi, D. Kordestani, S. Sajjadifar, M. Hamelian, Iran. Chem. Commun., 2014, 2, 27-33.
[30] I. Safarik, L. Ptackova, M. Safarikova, Eur Cell Mater, 2002, 3, 52-55.
[31] F. Chen, Zh. Liu, Y. Liu, P. Fang, Y. Dai, Chem. Eng. J., 2013, 221, 283-291.
[32] A.R. Cestari, E.F.S. Vieira, G.S. Vieira, L.P.D. Costa, A.M.G. Tavares, W. Loh, C. Airoldi, J. Hazard. Mater, 2009, 161, 307-316.
[33] L. Zhou, J. Jin, Zh. Liu, X. Liang, Ch. Shang, J Hazard Mater,  2011, 185, 1045-1052.
[34] D. Sun, X. Zhang, Y. Wu, X. Liu, J. Hazard. Mater, 2010, 181, 335-342.
[35] (a) J. Zolgharnein, M. Bagtash, T. Shariatmanesh, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 1016-1028; (b) H. Veisi, A. Sedrpoushan, P. Mohammadi, A.R. Faraji, S. Sajjadifar, RSC Advances, 2014, 4, 25898-25903; (c) S. Sajjadifar, M.A. Zolfigol, G. Chehardoli, S. Miri, International Journal of Chem Tech Research, 2013, 5, 422-429; (d) ER Nezhad, S. Sajjadifar, Z. Abbasi, S. Rezayati, Journal of Sciences, Islamic Republic of Iran, 2014, 25, 127-134.
[36] J. Zolgharnein, M. Bagtash, N. Asanjarani, Journal of Environmental Chemical Engineering, 2014.
[37] (a) Sh. Mahdavi, M. Jalali, A. Afkhami, Clean Techn Environ Policy, 2014; (b) S. Sajjadifar, S. Rezayati, International Journal of ChemTech Research, 2013, 5, 1964-1968
[38] V.G. Prasanth, K.I. Sathiyanarayanan, M. Pathak, International Journal of Frontiers in Science and Technology, 2015, 3, 73-80.
[39] (a) E. Mohammadifar, F. Shemirani, B. Majidi, M. Ezoddin, Desalination and Water Treatment, 2014, 1-11; (b) E. Rezaee Nezhad, F. Heidarizadeh, S. Sajjadifar, Z. Abbasi, Journal of Petroleum Engineering, 2013, 2013, http://dx.doi.org/10.1155/2013/203036; (c) S. Sajjadifar, International Journal of Chem Tech Research, 2013, 5, 385-389; (d) M.A. Zolfigol, H. Vahedi, A. Massoudi, S. Sajjadifar, O. Louie, Clinical Biochemistry, 2011, 13, S219.
[40] A. Afkhami, M. Saber-Tehrani, H. Bagheri, T. Madrakian, Microchim Acta., 2011, 172, 125-136.