Web of Science (Emerging Sources Citation Index)

Document Type: Original Research Article

Authors

1 Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran

2 Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran

3 Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran

4 Esfarayen University of Technology, Esfarayen, Iran

5 Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran

6 Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran

7 Department of Mining Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

10.33945/SAMI/ECC.2020.4.11

Abstract

An electrochemical method has been described for the voltammetric oxidation and determination of norepinephrine (NE) at a carbon paste electrode (CPE) modified with RuO2 nano-roads and ionic liquid. The results indicated that the voltammetric response of norepinephrine was improved distinctly at the surface of modified electrode and the oxidation of norepinephrine at the surface of modified electrode occurs at a potential about 200 mV less positive than that of an unmodified CPE. The anodic peak was characterized and the process was diffusion-controlled. The current measured by differential pulse voltammetry (DPV) presented a good linear property as a function of the concentration of norepinephrine in the range of 0.07-400.0 µM, with a detection limit of 0.02 µM for norepinephrine. Also, this modified electrode was used for simultaneous determination of norepinephrine and acetaminophen. Finally, the proposed method was successfully applied to norepinephrine and acetaminophen determination in pharmaceutical samples and urine as real samples.

Graphical Abstract

Keywords

[1] C. Bian, Q. Zeng, H. Xiong, X. Zhang, S. Wang, Bioelectrochemistry, 2010, 79, 1-5.‏

[2] H. Beitollahi, S. Mohammadi, Mater. Sci. Eng C, 2013, 33, 3214-3219.

[3] P.S. Ganesh, B.K. Swamy, J. Electroanal. Chem., 2015, 752, 17-24.‏

[4] E.J. Lee, J.H. Choi, S.H. Um, B.K. Oh, Korean J. Chem.Eng, 2017, 34, 1129-1132.‏

[5] Y. Wang, S. Wang, L. Tao, Q. Min, J. Xiang, Q. Wang, H. Ding, Biosens. Bioelectron., 2015, 65, 31-38.‏

[6] A.L. Liu, S.B. Zhang, W. Chen, X.H. Lin, X.H. Xia, Biosens. Bioelectron., 2008, 23, 1488-1495.‏

 [7] V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb, J. Chromatogra B, 2007, 847(2), 88-94.‏

 [8] D.L. Kuhlenbeck, T.P. O’Neill, C.E. Mack, S.H. Hoke II, K.R. Wehmeyer, J. Chromatogra B Biomed. Sci. Appl., 2000, 738, 319-330.‏

[9] Z. Lin, X. Wu, X. Lin, Z. Xie, J. Chromatogra A, 2007, 1170, 118-121.‏

[10] M. Zhu, X. Huang, J. Li, H. Shen, Anal. Chim. Acta., 1997, 357, 261-267.‏

[11] E. Nalewajko, A. Wiszowata, A. Kojło, J. pharma. Biomed. Anal., 2007, 43, 1673-1681.‏

[12] N. S. Anuar, W. J. Basirun, M. Ladan, M. Shalauddin, M. S. Mehmood, Sens. Actuators B Chem., 2018, 266, 375-383.‏

[13] A.R. Khaskheli, A. Shah, M. I. Bhanger, A. Niaz, S. Mahesar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2007, 68, 747-751.‏

 [14] S. Daya, S. Anoopkumar-Dukie, Life Sci., 2000, 67, 235-240.‏

 [15] H. Maharaj, D.S. Maharaj, K.S. Saravanan, K.P. Mohanakumar, S. Daya, Metab. Brain Dis., 2004, 19, 71-77.‏

[16] H. Soltani, H. Beitollahi, A.H. Hatefi-Mehrjardi, S. Tajik, M. Torkzadeh-Mahani, Anal. Bioanal. Electrochem, 2014, 6, 67-79.

[17] N.S. Anuar, W. J. Basirun, M. Ladan, M. Shalauddin, M. S. Mehmood, Sens. Actuators B Chem., 2018, 266, 375-383.‏

[18] H. Beitollahi, Z. Dourandish, S. Tajik, M.R. Ganjali, P. Norouzi, F. Faridbod, J. Rare Earths, 2018, 36(7), 750-757.

 [19] S. Sharma, N. Singh, V. Tomar, R. Chandra, Biosens. Bioelectron., 2018, 107, 76-93.‏

[20] M. R. Ganjali, Z. Dourandish, H. Beitollahi, S. Tajik, L. Hajiaghababaei, B. Larijani, Int. J. Electrochem. Sci., 2018, 13, 2448-2461.

[21] Q. He, J. Liu, X. Liu, Y. Xia, G. Li, P. Deng, D. Chen, Molecules, 2018, 23, 2130.‏

[22] H. Beitollahi, S. Tajik, M.H. Asadi, P. Biparva, J. Anal. Sci. Technol., 2014, 5, 29.‏

[23] M. O. Salles, W. R. Araujo, T. R. Paixão, J. Braz. Chem. Soci., 2016, 27, 54-61.‏

 [24] H. Beitollai, F. Garkani Nejad, S. Tajik, Sh. Jahani, P. Biparva, Int. J. Nano Dimens., 2017, 8, 197-205.‏

[25] Y. Wang, Y. Li, L. Tang, J. Lu, J. Li, Electrochem. Commun., 2009, 11, 889-892.‏

 [26] M. M. Motaghi, H. Beitollahi, S. Tajik, R. Hosseinzadeh, Int. J. Electrochem. Sci., 2016, 11, 7849-7860.

 [27] X. Ma, M. Chen, Sens. Actuators B Chem., 2015, 215, 445-450.

 [28] S. Thiagarajan, R. F. Yang, S. M. Chen, Bioelectrochemistry, 2009, 75, 163-169.

[29] C. Wang, C. Zhang, W. Hua, Y. Guo, G. Lu, S. Gil, A. Giroir-Fendler, RSC Adv., 2016, 6, 99577-99585.‏

 [30] B. Devadas, R. Madhu, S. M. Chen, V. Veeramani, M. Rajkumar, Sci. Adv. Mater., 2015, 7, 654-662.‏

[31] M. Sheikhshoaie, H. Karimi-Maleh, I. Sheikhshoaie, M. Ranjbar, J. Mol. Liq., 2017, 229, 489–494.

[32] A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd ed. Wiley, New York, 2001.

[33] J. Chen, H. Huang, Y. Zeng, H. Tang, L. Li, Biosens. Bioelectron., 2015, 65, 366-374.

[34] A. Fajardo, D. Tapia, J. Pizarro, R. Segura, P. Jara, J. Appl. Electrochem., 2019, 49, 423-432.