Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Department of Chemistry, Centre for advance studies, Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India

2 Department of Chemistry, Dr. D.Y. Patil A. C. S. College, Pimpri, Pune, 411018, India

Abstract

This study introduces a novel and efficient approach for the oxidative aromatization of tetrahydro-γ-carboline using CuCl2.2H2O and I2, H2O2 in DMSO. This method was applied for all kinds of C-3 substituted tetrahydro-γ-carboline (THγC) units to access the corresponding aromatic γ-carbolines. With a 0.25 mol% CuCl2. 2H2O as a catalyst, THγC could be efficiently oxidized to γ-carboline at 100 °C with excellent yield. This protocol was also generalized for the aromatization of tetrahydro-β-carboline-3-carboxylic acid to corresponding β-carboline-3-carboxylic acid. The entire synthesized new compounds were characterized by using 1HNMR, 13CNMR and Mass spectroscopy technique. To the best of our knowledge, this is the first synthesis of γ-carbolines via an oxidative aromatization of THγC.

Graphical Abstract

A novel and simple strategy for the synthesis of γ-carboline

Keywords

Main Subjects

[1] R.R.S. Alekseyev, A.V. Kurkin, M.A., Yurovskaya. Chem. Heterocycl. Compd., 2011, 46, 1169–1198.
[2] R.J. Paul, W. James, E. Daniel, D.G. Marcos, R.S. Matthew, J.G. Stephen J.G., G.B. Robert, et al. Bioorg. Med. Chem., 2008, 16, 7728–7739.
[3] V.I. Alexandre, B.F. Eugene, D. Oleg, M.K. Volodymyr, V.K. Alexander, M.O. Ilya, E.T. Sergey, Bioorg. Med. Chem. Lett., 2009, 19, 3183−3187.
[4] R. Sarges, H.R. Howard, K.M. Donahue, W.M. Welch, B.W. Dominy, A. Weissman, B.K. Koe, J. Bordner, J. Med.Chem., 1980, 23, 635-643.
[5] a) A.A. Kurland, A. Nagaraju, T.E. Hanlon, J. Clin. Pharmacol. 1988, 22, 441-445. b) C.A. Harbert, J.J. Plattner, W.M. Welch, A. Weissman, B.K. Koe, J. Med. Chem.,1980, 23, 635-643.
[6] V.S. Nadezhda, G.N. Valentine, B.S. Vladimir, V.V. Daria, F.S.Elena, G.D.Ludmila, O.B. Sergey, Beilstein, J. Org Chem., 2014, 10, 155–162.
[7] G. Hongling, D. Jiangkun, X. Yaxi, W. Shijun, W. Junru , Int. J. Mol. Sci., 2018, 19, 3179.
[8] M. Stefek, L. Benes, M. Jergelová, V. Scasnár, N.L. Turi, P. Kocis  Xenobiotica., 1987, 17, 1067-1073.
[9] K. Sako, H. Aoyama, S. Sato, Y. Hashimoto, M. Baba, Bioorg. Med. Chem., 2008, 16, 3780-3790.
[10] C.A. Harbert, J.J. Plattner, W.M. Welch, A. Weissman, A., J. Med. Chem., 1980, 23, 635-643.
[11] D. Jiangkun, D. Wenjia, Z. Yunyun, W. Junru, E. J. org. Chem., 2018, 157, 447-461. b) W. Shengzheng, W. Yan, L. Wei, L.D. Guogiang, L. Yang, L. Zhengang, H. Xiaomeng,  M. Zhenyuan, Y. Jianzhong, L. Jian, Z. Wannian , S. Chunquan , ACS. Med. Chem. Lett., 2014, 5, 506-511.
[12] O. Robert, P. Robert, G. Friedemann, W. Thomas, A. Dorothea, F. Christian, T. Christian, L. Jochen, E. Christoph, Eur. J. Med. Chem.,2014, 87, 63-70.
[13] a) M. Andrés, J.V. Juan, L.G. N. José, A.B. Julio, Tet. Lett.,1993, 34, 2673-2676. b) R.S. Alekseev, A.V. Kurkin, M.A. Yurovskaya, Chem. Heterocycl. Compd., 2012,48, 1235–1250.
[14] a) G. Sara, S. David, J.V. Juan, J. Org. Chem., 2018, 83, 6623-6632. b) M.H. Majid, R. Sahar, Z. Vahideh, Z. Nazli, RSC. Adv., 2017, 7, 52852-52887.
[15] P. Molina, J. Alcántara, L.C. López., Tetrahedron, 1996, 52, 5833-5844.
[16] a) Q.H. Tran, T.B. Tuan, J. Julia, V.P.L.Alexander, Org. Biomol. Chem., 2015, 13, 1375-1386. b) S.V. Gaikwad, B.R. Nawghare, P.D. Lokhande, B. Chem. Soc. Ethiopia, 2015, 29, 319-325.
[17] A.S. Scott, A.V. David, G. Matthew, J.M. Hodge, Tetrahedron, 2000, 56, 5329-5335
[18] Z. Haiming, C.L. Richard, J. Org. Chem., 2003, 68, 5132-5138.
[19] F. Nissen,V. Richard, C. Alayrac, B. Witulski, Chem. Commun., 2011, 47, 6656-6658.
[20] W.L.Yang, C.Y. Li, W.J. Qin, F.F. Tang, X. Yu, W.P. Deng, ACS Catal. 2016, 6, 5685−5690
[21] K.L. Joydev, P. Philip, D.C. Gregory, J. Org. Chem., 2009, 74, 3152-3155.
[22] a) C. Jing, C. Weiliang, H. Yongzhou, Synlett,2008, 1, 77–82. DOI: 10.1055/s-2007-992411. b) B. Josep, D. Faïza,P. Lluís, P. Daniel, S. Lidia, M. Montserrat, V. Dolors, A. Paquita, P. Carles, Bioorg. Med. Chem. Lett., 2009, 19, 4299–4302.
[23] a) P.D. Lokhande, K. Hasanzadeh, Khaledi, A.M. Mohd., J. Heterocycl. Chem.,2012,49, 1398-1406. b) B. Esther, V.H. Max, L.B. Sarah, K. Martin, J. Org. Chem., 2020, 85, 1972–1980.
[24] a) B.R. Nawghare, S.V. Gaikwad, A. Raheem, P.D. Lokhande, J. Chil. Chem. Soc., 2014, 59, 2284-2286; b) B.R. Nawghare, S.V.Gaikwad, V.B. Pawar, P.D. Lokhande, B. Chem. Soc. Ethiopia, 2012,28, 469-473. C) S.V. Gaikwad, D. Kamble, P. Lokhande, Tetrahedron Letters, 2018, 59, 2387–2392. d) S.V. Gaikwad, M.A. Kobaisi, M. Devkate, R. Joshi, R. Shinde, M.V., Gaikwad, M.D. Nikalje, S.V. Bhosale, P.D. Lokhande, Chemistry Select, 2019, 4, 10054-10059.
[25] F.M. Ferguson, O. Fedorov, A. Chaikuad, M. Philpott, J.R.C. Muniz, I. Felletar, F. V. Delft, T. Heightman, S. Knapp, C. Abell, A. Ciulli, J. Med. Chem., 2013, 56, 10183-10187
[26] B. Alexandre, G. Laurence, H. Raymond, J.P. Hénichart, J. Heterocyclic Chem.,2006, 43, 571-578.
[27] S.Haruka, T. Shiori, T. Takahiro, Y. Mai, Y. Koji, J. Org. Lett., 2018, 20, 1589–1592.
[28] S. Kumiko, A. Hiroshi, S. Shinichi, H. Yuichi, B. Masanori, Bioorg. Med. Chem., 2008, 16, 3780–3790.
[29] J.S. Hong, X.L. Yu, M.W.  Qing,  Chem. Eur. J., 2018, 24, 2065–2069.
[30] a) E. Boess, C. Schmitz, M. Klussmann, J. Am. Chem. Soc. 2012, 134, 5317−5325.
b) E. Boess, D. Sureshkumar, A. Sud, C. Wirtz, C. Fares, M. Klussmann, J. Am. Chem. Soc. 2011, 133, 8106–8109. C) G. J, heng, L. J.,Song, Y. F., Yang, X. Zhang, O. Wiest, Y. D., Wu, Chem.Plus.Chem. 2013, 78, 943–951. D) E. Boess, M. V. Hoof, S. L. Birdsall, M. Klussmann, J. Org. Chem. 2020, 85, 1972–1980.