FULL PAPER

The first and second Zagreb polynomial and the forgotten polynomial of $\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$

 |Murat Cancan ${ }^{\text {e }}$ |Süleyman Ediz ${ }^{\text {e }}$

${ }^{a}$ MCS, National University of Sciences and Technology, Islamabad, Pakistan
${ }^{b}$ Department of Mathematics and Statistics, The University of Lahore, Lahore, 54000, Pakistan
${ }^{\text {c Department of Mathematics, COMSATS Institute }}$ of Information Technology, Attock, Pakistan
${ }^{d}$ Department of Applied Mathematics, Iran University of Science and Technology, Tehran, Iran
${ }^{e}$ Faculty of Education, Van Yuzuncu Yil University, Zeve Campus, Tuşba, 65080, Van, Turkey

*Corresponding Author:

Abdul Qudair Baig
Email: aqbaig1@gmail.com
Tel.: +92-333-4103140

Abstract

In this paper, the 1st and 2nd Zagreb polynomials and the forgotten polynomial of $\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$ were computed. Some degreebased topological indices such as 1st and 2nd multiple Zagreb indices, Hyper Zagreb index and the forgotten index or F-index of the given networks were also computed. In addition, we represented the outcome by graphical representation that describe the dependence of topological indices on the given parameters of polynomial structures.

KEYWORDS

Algebraic polynomial; topological descriptor; Zagreb indices; topological indices.

Introduction

A topological descriptor is a kind of a molecular topological invariant that is computed based on molecular structure of some chemical compound. A large number of chemical experiments look for a resolution of the chemical characteristics of compounds and drugs. Also, these chemical-based experiments validate that there is robust inherent correlation among the chemical characteristics of compounds, drugs and their molecular structures [1-7].

In the field of mathematical chemistry, topological index is a number associated with molecular graph of a compound that depends on topology of that compound and assists in deciding the properties of apprehensive compound. A topological index can be designed by restructuring any chemical structure into some quantity. Thus, these
topological invariants are related with some physicochemical characteristics such as stability, strain energy and boiling point etc. These can be computed by means of definitions. Since its beginning in three to four decades ago, this issue has attracted many researchers from developing countries, because of its significance in the field of biochemistry, biotechnology, medical science and theoretical Chemistry [8-18].

Some basic definitions, related results and further information on topological indices can be obtained in the literature [19-31].

Main results

In this section, we provided main computational results. We computed the 1st and 2nd Zagreb polynomial, and the forgotten polynomial of $\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$ in this article. We also computed some degree-based topological indices such as 1st and 2nd multiple Zagreb
indices, Hyper Zagreb index and the forgotten index or F-index for the given networks.

Theorem 1. Let $G \approx C_{m} \times C_{n}$ be the graph, the 1 st Zagreb polynomial for this graph is

$$
M_{1}\left(C_{m} \times C_{n}\right)=2 m n x^{8} .
$$

Proof. Let $G \approx C_{m} \times C_{n}$ be the graph then the cardinality of vertex set is $m n$ and edge set is 2 mn . Then

$$
\begin{gathered}
M_{1}(G, x)=\sum_{u v \in E(G)} x^{\left(d_{u}+d_{v}\right)} \\
M_{1}\left(C_{m} \times C_{n}, x\right)=\sum_{u v \in E\left(C_{m} \times C_{n}\right)} x^{\left(d_{u}+d_{v}\right)}
\end{gathered}
$$

since degree of all vertices is 4 so,

$$
M_{1}\left(C_{m} \times C_{n}, x\right)=\left|E\left(C_{m} \times C_{n}\right)\right| x^{(4+4)}=2 m n x^{8} .
$$

Theorem 2. Let $G \approx C_{m} \times C_{n}$ be the graph, the 2 st Zagreb polynomial for this graph is

$$
M_{2}\left(C_{m} \times C_{n}\right)=2 m n x^{16}
$$

Proof. Let $G \approx C_{m} \times C_{n}$ be the graph, the cardinality of vertex set is $m n$ and edge set is 2 mn . Then
$M_{2}(G, x)=\sum_{u v \in E(G)} x^{\left(d_{u} \times d_{v}\right)}$
$M_{2}\left(C_{m} \times C_{n}, x\right)=\sum_{u v \in E\left(C_{m} \times C_{n}\right)} x^{\left(d_{u} \times d_{v}\right)}$
since degree of all vertices is 4 so,

$$
M_{2}\left(C_{m} \times C_{n}, x\right)=\left|E\left(C_{m} \times C_{n}\right)\right| x^{(4 \times 4)}=2 m n x^{16}
$$

Theorem 3. Let $G \approx C_{m} \times C_{n}$ be the graph, the forgotten polynomial for this graph is $F\left(C_{m} \times C_{n}\right)=2 m n x^{32}$.

Proof. Let $G \approx C_{m} \times C_{n}$ be the graph, the cardinality of vertex set is $m n$ and edge set is 2 mn . Then

$$
\begin{aligned}
& F(G)=\sum_{u v \in E(G)}\left(\left(d_{u}\right)^{2}+\left(d_{v}\right)^{2}\right) \\
& \begin{aligned}
& F\left(C_{m} \times C_{n}\right)=\sum_{u v \in E\left(C_{m} \times C_{n}\right)}\left(\left(d_{u}\right)^{2}+\left(d_{v}\right)^{2}\right) \\
& \quad= E\left(C_{m} \times C_{n}\right) \mid\left((4)^{2}+(4)^{2}\right) \\
& \quad=2 m n x^{32}
\end{aligned}
\end{aligned}
$$

The graph of 1st Zagreb polynomial, 2nd Zagreb polynomial and forgotten polynomial for $\mathrm{C}_{8} \times \mathrm{C}_{7}$ are shown in Figure 1. Below.

FIGURE 1 Graph of algebraic polynomials for $\left(\mathrm{C}_{8} \times \mathrm{C}_{7}\right)$

Proposition: Let $G \approx C_{m} \times C_{n}$ be the graph then the hyper Zagreb index, 1st multiple Zagreb index, 2nd multiple Zagreb index and forgotten index are
$H M\left(C_{m} \times C_{n}\right)=132 m n$;
$P M_{1}\left(C_{m} \times C_{n}\right)=64^{m n}$;
$P M_{2}\left(C_{m} \times C_{n}\right)=256^{m n} ;$
$F\left(C_{m} \times C_{n}\right)=32^{2 m n}$.

Proof. Let $G \approx C_{m} \times C_{n}$ be the graph then the cardinality of vertex set is $m n$ and edge set is $2 m n$. Then

$$
\begin{aligned}
& H M(G)=\sum_{u v \in E(G)}\left(d_{u}+d_{v}\right)^{2} \\
& \begin{aligned}
H M\left(C_{m} \times C_{n}\right) & =\sum_{u v \in E\left(C_{m} \times C_{n}\right)}\left(d_{u}+d_{v}\right)^{2} \\
& =\left|E\left(C_{m} \times C_{n}\right)\right|(8)^{2} \\
& =132 m n
\end{aligned}
\end{aligned}
$$

by definition

$$
\begin{aligned}
& \operatorname{PM1}(G)=\prod_{u v \in E(G)}\left(d_{u}+d_{v}\right) \\
& \begin{aligned}
P M_{1}\left(C_{m} \times C_{n}\right) & =\prod_{u v \in E\left(C_{m} \times C_{n}\right)}\left(d_{u}+d_{v}\right) \\
& =(4+4)^{\left|E\left(C_{m} \times C_{n}\right)\right|} \\
& =64 m n .
\end{aligned}
\end{aligned}
$$

by definition

$$
\begin{aligned}
& P M_{2}(G)=\prod_{u v \in E(G)}\left(d_{u} \times d_{v}\right) \\
& P M_{2}\left(C_{m} \times C_{n}\right)=\prod_{u v \in E\left(C_{m} \times C_{n}\right)}\left(d_{u} \times d_{v}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P M_{2}\left(C_{m} \times C_{n}\right)=\prod_{u v \in E\left(C_{m} \times C_{n}\right)}(4 \times 4)^{\left|E\left(C_{m} \times C_{n}\right)\right|} \\
& =\prod_{u v \in E\left(C_{m} \times C_{n}\right)} 256^{m n} . \\
& F\left(C_{m} \times C_{n}\right)=\prod_{u v \in E\left(C_{m} \times C_{n}\right)}\left(d_{u}^{2}+d_{v}^{2}\right) \\
& F\left(C_{m} \times C_{n}\right)=\prod_{u v \in\left(C_{m} \times C_{n}\right)}\left(4^{2}+4^{2}\right) \\
& =(16+16)^{\mid E\left(C_{m} \times C_{n} \mid\right.}=32^{2 m n} .
\end{aligned}
$$

3D plot for hyper Zagreb index, 1st Zagreb index, 2nd Zagreb index and forgotten index are shown in Figure 2.

TABLE 1 Edge partition of $\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$ based on degree of end vertices of each edge

$\left(\mathbf{d}_{u} ; \mathbf{d}_{\mathbf{v}}\right)$	$\mathbf{(2 ; 3)}$	$\mathbf{(3 ; 3)}$	$\mathbf{(3 ; 4)}$	$\mathbf{(4 ; \mathbf { 4 })}$
Frequency	8	$6+4 \mathrm{t}$	$10(\mathrm{t}-1) \mathrm{t}$	$4 \mathrm{t}^{2}+5 \mathrm{t}-3$

FIGURE 2 Graph of topological indices for $\left(\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}\right)$

Conclusion

Graphs are indeed an important tool used for describing and representing algorithms, information related structures, networks, flows of electricity, social interaction and
many other things in science and technology. Here, we computed several degree-based topological indices such as 1st multiple Zagreb index, 2nd multiple Zagreb index, Hyper Zagreb index and the forgotten index or F-index of these networks. These
topological indices can help us in understanding of the chemical reactivity, biological problems and several physical features.

Acknowledgments

The authors would like to thank the reviewers for their helpful suggestions and comments.

Orcid:

Farkhanda Afzal: https://orcid.org/0000-0001-5396-7598
Deeba Afzal: https://orcid.org/0000-0001-5268-7260
Abdul Qudair Baig: https://orcid.org/0000-0002-8913-5221
Mohammad Reza Farahani:
https://orcid.org/0000-0003-2969-4280
Murat Cancan: https://orcid.org/0000-0002-8606-2274
Süleyman Ediz: https://orcid.org/0000-0003-0625-3634

References

[1] D. Amic, D. Beslo, B. Lucic, S. Nikolic, N. Trinajstić, J. Chem. Inf. Comput. Sci., 1998, 38, 819-822.
[2] M. Ajmal, W. Nazeer, M. Munir, S.M. Kang, Y.C. Kwun, Symmetry, 2017, 9, 1-12.
[3] M. Ajmal, W. Nazeer, M. Munir, S.M. Kang, Y.C. Kwun, Int. J. Math. Analysis., 2017, 11, 293-303.
[4] B. Furtula, I. Gutman, J. Math. Chem., 2015, 53, 1184-1190.
[5] I. Gutman, N. Trinajstić, Chem. Phys. Lett., 1972, 17, 535-538.
[6] S. Hayat, M. Imran, App. Math. and Comput., 2014, 240, 213-228.
[7] S. Klavžar, I. Gutman, J. Chem. Inf. Comput. Sci., 1996, 36, 1001-1003.
[8] J.B. Liu, X.F. Pan, Appl. Math. Comput., 2016, 291, 84-88.
[9] J.B. Liu, W.R. Wang, Y.M. Zhang, X.F. Pan, Discrete Appl. Math., 2016, 203, 217-225.
[10] J.B. Liu, X.F. Pan, L. Yu, D. Li, Discrete Appl. Math., 2016, 200, 95-107.
[11] J. Liu, B. Liu, MATCH Commun. Math. Comput. Chem., 2008, 59, 397-419.
[12] J. B. Liu, X.F. Pan, F.T. Hu, F.F. Hu, Appl. Math. Comput., 2015, 253, 205-214.
[13] M. Munir, W. Nazeer, S. Rafique, A.R. Nizami, S.M. Kang, Symmetry, 2016, 8, 117125.
[14] M. Munir, W. Nazeer, S. Rafique, A.R. Nizami, S.M. Kang, Symmetry, 2016, 8, 149156.
[15] A.Q. Baig, M. Imran, H. Ali, Can. J. Chem., 2015, 93, 730739.
[16] A.Q. Baig, M. Imran, W. Khalid, M. Naeem, Can. J. Chem., 2017, 95, 674686.
[17] M. Randić, J. Am. Chem. Soc., 1975, 97, 6609-6615.
[18] H. Wiener, J. Amer. Chem. Soc., 1947, 69, 17-20.
[19] F. Afzal, S. Hussain, D. Afzal, S. Razaq, J. Inf. Opt. Sci., 2020, 41, 1061-1076.
[20] M. Cancan, S. Ediz, H. Mutee-Ur-Rehman, D. Afzal., J. Inf. Opt. Sci., 2020, 41, 1117-1131.
[21] M. Cancan, S. Ediz, M.R. Farahani, Eurasian Chem. Commun., 2020, 2, 641-645.
[22] A.Q. Baig, M. Naeem, W. Gao, J.B. Liu, Eurasian Chem. Commun., 2020, 2, 634-640.
[23] F. Afzal, M.A. Razaq, D. Afzal, S. Hameed, Eurasian Chem. Commun., 2020, 2, 652-662.
[24] M. Alaeiyan, C. Natarajan, G. Sathiamoorthy, M.R. Farahani, Eurasian Chem. Commun., 2020, 2, 646-651.
[25] H. Yang, X. Zhang, J. D. Math. Sci. and Cryp., 2018, 21, 1495-1507.
[26] M. Imran, S.A. Bokhary, S. Manzoor, M.K. Siddiqui. Eurasian Chem. Communm., 2020, 2, 680-687.
[27] Z. Ahmad, M. Naseem, M.K. Jamil, Sh. Wang, M.F. Nadeem, Eurasian Chem. Comтип.,2020, 2, 712-721.
[28] Z. Ahmad, M. Naseem, M.K. Jamil, M.K. Siddiqui, M.F. Nadeem. Eurasian Chem. Commun., 2020, 2, 663-671.
[29] M. Cancan, S. Ediz, M.R. Farahani, Eurasian Chem. Commun., 2020, 2, 641-645.
[30] A.Q. Baig, M. Naeem, W. Gao, J.B. Liu, Eurasian Chem. Commun., 2020, 2, 634-640.
[31] F. Afzal, M.A. Razaq, D. Afzal, S. Hameed, Eurasian Chem. Commun., 2020, 2, 652-662.

> How to cite this article: Farkhanda Afzal, Deeba Afzal, Abdul Qudair Baig, Mohammad Reza Farahani, Murat Cancan, Süleyman Ediz. The First and Second Zagreb Polynomial and the Forgotten Polynomial of $\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$. Eurasian Chemical Communications, 2020 2(12), $1183-1187$. http://www.echemcom.com/article_119445 html

Copyright © 2020 by SPC (Sami Publishing Company)+ is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

