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Topological indices are real (numerical) values which are 
associated with chemical compositions to correlate with 
chemical structure with different physical properties, chemical 
and biological activities. In this article, we computed and 
compared leap Zagreb indices and leap hyper-Zagreb indices of 
the derived graph of the subdivision of certain polyphenyls 
based on the 2-distance degree of the vertices. 
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Introduction 

The graph G* under consideration is simple 

and finite with V(G*) and E(G*) called the 

vertex set and the edge set, respectively. The 

degree dx of any vertex x is the cardinality of 

vertices that are at path of length 1 from a 

vertex x. The shortest path between two 

vertices x and y of a graph G*, represented by 

d(x;y), is the distance between x and y. The 

topological indices are used for modeling 

information of molecules and atoms in 

synthetically and structural chemistry [10-13, 

16]. The subdivision graph of G*, denoted by 

S(G*), is a graph in which |E(S(G*))|=2|E(G*)|. 

The derived graph (line graph) L(G*) of graph 

G* has vertex set which is the edge set of 

graph G* and 2 vertices of derived graph 

L(G*) have common vertex if and only if their 

corresponding edges have a common vertex 

in G* [1]. There more details on the derived 

graph of the subdivision [8, 9, 14, 15, 24, 25]. 

For a vertex y in G*, the open k neighborhood 

of y is defined as * *( / ) { ( ) : ( , ) },kN y G u V G d x y k    
where k is a non-negative integer. The k-

distance degree, denoted by dk(y/G*), of a 

vertex x∈V(G*) is the number of k neighbors 

of y in G*, i:e:

 

* *( / ) | ( / ) | .k kd y G N y G  It is clear 

that d1(y/G*)=dy for every y∈V(G*). The 2-

distance degree of a vertex y is the number of 

vertices at distance two to y. 

In a graph G*, a vertex y is a cut vertex if its 

deletion increase components in G*. An edge 

xy in G* is cut-edge if its deletion along with 

its adjacent vertices increase components in 

G*. If the cardinality of cut vertices of each 

hexagon in graph G* is at most two and all 

cut-vertices are shared by only one hexagon 

and with one cut-edge, then G* is polyphenyl 

hexagon(PH) chain. The length of PH chain is 

the number of hexagons in PH chain. The PH 

chain with length n has 6n vertices and 7n-1 

edges. There are more details on topological 

indices of certain polyphenyls [4-6, 11, 25-

39]. 
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Naji et al (2017) gave explicit formulation 

of leap Zagreb indices of some graphs [20]. P. 

Shiladhar et al., calculated leap Zagreb indices 

of some wheel related graphs [23]. There are 

further properties of leap graphs [7, 3, 18-

22]. 

The 1st, 2nd, and 3rd leap Zagreb indices for 

a simple graph G* with their polynomials are 

as follows: 
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respectively. 

In 2019, leap hyper-Zagreb indices were 

introduced by V. R. Kulli. Leap hyper-Zagreb 

indices of some nanostructures and of certain 

windmill graphs are computed by B. 

Basavanagoud, E. Chitra, respectively [2] and 

V. R. Kulli [17].  

The first and second leap hyper-Zagreb 

indices for a simple graph G* with their 

polynomials are as follows: 
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respectively. 

Leap Zagreb and leap hyper-Zagreb 
indices of the derived graph of S(On), S(Mn) 
and S(Pn) 

The subdivision graphs S(On), S(Mn) and S(Pn) 

have 13n-1 vertices and 14n-2 edges. The 

graphs L(S(On)), L(S(Mn)) and L(S(Pn)) are 

derived graphs of S(On), S(Mn) and S(Pn). In 

this section, we will give some explicit 

formulas of leap Zagreb and leap hyper-

Zagreb indices of L(S(On)), L(S(Mn)) and 

L(S(Pn)), see Figures 1, 2, 3. 

 

FIGURE 1 The derived graph of S(On). 

Theorem 1. If L(S(On)) is the derived graph 

of S(On), then 

(1) LM1(L(S(On)))=124n-72. 

(2) LM2(L(S(On)))=162n-126. 

(3) LM3(L(S(On)))=102n-56. 

(4) HLM1(L(S(On)))=654n-508. 

(5) HLM2(L(S(On)))=1914n-2142. 

 

Proof. Let the graph L(S(On)) in Figure 2 be 

the derived graph of the subdivision of meta-

polyphenyl chain with |V[L(S(On))]|=14n-2 

and |E[L(S(On))]|=17n-5. 

For an edge xy∈E(L(S(On)), the 2-distance 

degree of a vertex x and vertex y is denoted 

by d2(x/L(S(On))) and d2(y/L(S(On)), 

respectively. The partitioning of E[L(S(On))] 

with respect to 2-distance degree of an edge 

xy in E[L(S(On))] where d2(x/L(S(On))) 

d2(y/L(S(On)))∈E[L(S(On))] and the 

partitioning of V[L(S(On))] depends on the 1-

distance degree and 2-distance degree of a 

vertex x, where d1(x/L(S(On))), 

d2(x/L(S(On))∈V(L(S(On)) which can be seen 

in Tables 1 and 2. 

TABLE 1 The partition of E(L(S(On))). 

No. of 
edges 

d2(x/L(S(On))) d2(y/L(S(On))) 

5n+4 2 2 
2n 2 3 

2(n+1) 3 3 
2(2n-2) 3 4 

4n-7 4 4 

TABLE 2 The partition of V(L(S(On))). 

No. of 
edges 

d2(x/L(S(On))) d2(y/L(S(On))) 

2(3n+2) 2 2 
2n 2 3 
2n 3 3 

2(2n-3) 3 4 

 

Using Formula (1) and Table 2, we have 
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Using Formula (2) and Table 1, we have 

LM2(L(S(On)))=(5n+4)(2.2)+2n(2.3) 

+2(n+1)(3.3)+2(2n-2)(3.4)+(4n-7)(4.4) 

=162n-126. 

 

Using Formula (3) and Table 2, we have 

LM3(L(S(On)))=2(3n+2)(2.2)+2n(3.3) 

+2n(2.3)+2(2n-3)(3.4)=102n-56. 

 

Using Formula (6) and Table 1, we have 
2 2

1

2 2

2

( ( ( ))) (5 4)(2 2) 2 (2 3)

2( 1)(3 3) 2(2 2)(3 4)

(4 7)(4 4) 654 508.

nHLM L S O n n

n n

n n

    

     

    

 

 

Using Formula (7) and Table 1, we have 

HLM1(L(S(On)))=(5n+4)(2+2)2+2n(2+3)2 

+2(n+1)(3+3)2+2(2n-2)(3+4)2 

+(4n-7)(4+4)2=654n-508. 

HLM2(L(S(On)))=(5n+4)(2.2)2+2n(2.3)2 

+2(n+1)(3.3)2+2(2n-2))(3.4)2 

+(4n-7)(4.4)2=1914n-2142. 

 

 

FIGURE 2 The derived graph of S(Mn). 

Theorem 2. If L(S(On)) is the derived graph 

of S(On), then 

(1)LM1(L(S(On));r)=(5n+4)r4+2nr5+2(n+1)r6 

+2(2n-2)r7+(4n-7)r8. 

(2)LM2(L(S(On));r)=(5n+4)r4+2nr6+2(n+1)r9 

+2(2n-2)r12+(4n-7)r16. 

(3)HLM1(L(S(On));r)=(5n+4)r16+2nr25 

+2(n+1)r36+2(2n-2)r49+(4n-7)r64. 

(4)HLM2(L(S(On));r)=(5n+4)r16+2nr36 

+2(n+1)r81+2(2n-2)r144+(4n-7)r256. 

 

Proof. Using Formulas of 4,5,8,9 and Tables 1 

and 2), we have them.■ 

 

Theorem 3. If L(S(Mn)) is the derived graph 

of S(Mn), then 

(1)LM1(L(S(Mn)))=120n-72. 

(2)LM2(L(S(Mn)))=151n-104. 

(3)LM3(L(S(Mn)))=100n-52. 

(4)HLM1(L(S(Mn)))=50n2+510n-420. 

(5)HLM2(L(S(Mn)))=72n2+1375n-1352. 
 

Proof. The partitioning of E[L(S(Mn))] with 

respect to 2-distance degree of an edge xy in 

L(S(Mn)) where d2(x/L(S(Mn))) 

d2(y/L(S(Mn)))∈E(L(S(Mn)) and the 

partitioning of V[L(S(Mn))] depends on the 1-

distance degree and 2-distance degree of a 

vertex x, where d1(x/L(S(Mn))), 

d2(x/L(S(Mn))) ∈V(L(S(Mn))) which can be 

seen in Tables 3 and 4, respectively. 

TABLE 3 The partition of E(L(S(Mn))). 

No. of 
edges 

d2(x/L(S(Mn))) d2(y/L(S(Mn))) 

3n+8 2 2 
2n 2 3 

7n-8 3 3 
4(n-1) 3 4 

n-1 4 4 

TABLE 4 The partitioning of V(L(S(Mn))). 

No. of 
edges 

d1(x/L(S(Mn))) d2(y/L(S(Mn))) 

4(n+2) 2 2 
4(n-1) 2 3 
4(n-1) 3 3 
2(n-1) 3 4 

 

Using Formula (1) and Table 4, we have 

LM1(L(S(Mn)))=4(n+2)(2)2+8(n-1)(3)2 

+(2n-2)(4)2=120n-72. 

 

Using Formula (2) and Table 3, we have 

LM2(L(S(Mn)))=(3n+8)(2.2)+2n(2.3) 

+(7n-8)(3.3)+4(n-1)(3.4)+(n-1)(4.4) 

=151n-104. 

 

Using Formula (3) and Table 4, we have 

LM3(L(S(Mn)))=4(n+2)(2.2)+4(n-1)(2.3) 

+4(n-1)(3.3)+(2n-2)(3.4)=100n-52. 

 

Using Formula (6) and Table 3, we have 

HLM1(L(S(Mn)))=(3n+8)(2+2)2 
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+2n(n-1)(2+3)2+(7n-8)(3+3)2 

+4(n-1)(3+4)2+(n-1)(4+4)2 

=50n2+510n-420. 

 

Using Formula (7) and Table 3, we have  

HLM2(L(S(Mn)))=(3n+8)(2.2)2 

+2n(n-1)(2.3)2+(7n-8)(3.3)2+4(n-1)(3.4)2 

+(n-1)(4.4)2=72n2+1375n-1352. 
 

 

FIGURE 3 The derived graph of S(Pn). 

Theorem 4. If L(S(Mn)) is the derived graph 

of S(Mn), then 

(1)LM1(L(S(Mn));r)=(3n+8)r4+2nr5+(7n8)r6 

+4(n-1)r7+(n-1)r8 

(2)LM2(L(S(Mn));r)=(3n+8)r4+2nr6+(7n8)r9 

+4(n-1)r12+(n-1)r16. 

(3)HLM1(L(S(Mn));r)=(3n+8)r16+2nr25 

+(7n-8)r36+4(n-1)r49+(n-1)r64. 

(4)HLM2(L(S(Mn));r)=(3n+8)r16+2nr36 

+(7n-8)r81+4(n-1)r144+(n-1)r256. 

 

Proof. Using Formulas of 4,5,8,9 and Tables 3 

and 4, we have them.■ 

 

Theorem 5. If L(S(Pn)) is the derived graph 

of S(Pn), then 

(1)LM1[L(S(Pn))]=120n-72. 

(2)LM2[L(S(Pn))]=150n-102. 

(3)LM3[L(S(Pn))]=100n-52. 

(4)HLM1[L(S(Pn))]=608n-416. 

(5)HLM2[L(S(Pn))]=1494n-1302. 

 

Proof. The partitioning of E[L(S(Pn))] with 

respect to 2-distance degree of an edge 

xy∈L(S(Pn)) where d2(x/L(S(Pn))) 

d2(y/L(S(Pn)))∈E(L(S(Pn)) and the 

partitioning of V[L(S(Pn))] depend on the 1-

distance degree and 2-distance degree of a 

vertex x, where d1(x/L(S(Pn))), d2(x/L(S(Pn))) 

∈V(L(S(Pn))) which can be seen in Tables 5 

and 6, respectively. 

Using Formula (1) and Table 6, we have 

LM1[L(S(Pn))]=4(n+2)(2)2+8(n-1)(3)2 

+(2n-2)(4)2=120n-72. 
 
Using Formula (2) and Table 5, we have 
LM2[L(S(Pn))]=2(n+5)(2.2)+4(n-1)(2.3) 
+(6n-6)(3.3)+4(n-1)(3.4)+(n-1)(4.4) 
=150n-102. 
 
TABLE 5 The partition of E(L(S(Pn))). 

No. of 

edges 
d2(x/L(S(Pn))) d2(y/L(S(Pn))) 

2(n+5) 2 2 

4(n-1) 2 3 

6(n-1) 3 3 

4(n-1) 3 4 

n-1 4 4 

 
TABLE 6 The partition of V(L(S(Pn))) 

No. of 
edges 

d1(x/L(S(Pn))) d2(x/L(S(Pn))) 

4(n+2) 2 2 
4(n-1) 2 3 
4(n-1) 3 3 
2(n-1) 3 4 

 
Using Formula (3) and Table 6, we have 
LM3[L(S(Pn))]=4(n+2)(2.2)+4(n-1)(2.3) 
+4(n-1)(3.3)+(2n-2)(3.4)=100n-52. 
 
Using Formula (6) and Table 5, we have 
HLM1[L(S(Pn))]=2(n+5)(2+2)2+4(n-1)(2+3)2 

+6(n-1)(3+3)2+4(n-1)(3+4)2+(n-1)(4+4)2 

=608n-416. 
 
Using Formula (7) and Table 5, we have 
HLM2[L(S(Pn))]=2(n+5)(2.2)2+4(n-
1)(2.3)2+6(n-1)(3.3)2+4(n-1)(3.4)2+(n-
1)(4.4)2=1494n-1302. 
 
Theorem 6. Let L(S(Pn)) be the derived 
graph of the S(Pn), then 
(1)LM1(L(S(Pn));r)=2(n+5)r4+4(n-1)r5 

+(6n-6)r6+4(n-1)r7+(n-1)r8. 
(2)LM2(L(S(Pn));r)=2(n+5)r4+4(n1)r6 

+(6n-6)r9+4(n-1)r12+(n-1)r16. 
(3)HLM1(L(S(Pn));r)=2(n+5)r16 

+4(n-1)r25+(6n-6)r36+4(n-1)r49+(n-1)r64. 
(4)HLM2(L(S(Pn));r)=2(n+5)r16+4(n-1)r36 

+(6n-6)r81+4(n-1)r144+(n-1)r256. 
 
Proof. Using Formulas (4,5,8,9) and Tables 5 
and 6.■ 
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Comparison of numerical values of leap 
Zagreb and leap hyper-Zagreb indices of 
the derived graphs of S(On), S(Mn) and 
S(Pn) 

In this section, the numerical values of leap 
Zagreb and leap hyper-Zagreb indices of the 
derived graphs of S(On), S(Mn) and S(Pn) were 
compared, see Figures 4-8. 

 

 

FIGURE 4 Comparison of first leap Zagreb index of the derived graphs of S(On), S(Mn) and S(Pn). 

 

FIGURE 5 Comparison of second leap Zagreb index of the derived graphs of S(On), S(Mn) and 
S(Pn) 

 

FIGURE 6 Comparison of third leap Zagreb index of the derived graphs of S(On), S(Mn) and S(Pn) 



P a g e  | 1200  F. Asif et al.  

 

 
FIGURE 7 Comparison of first leap hyper-Zagreb index of the derived graphs of S(On), S(Mn) and 
S(Pn) 

 
FIGURE 8 Comparison of second leap hyper-Zagreb index of the derived graphs of S(On), S(Mn) 
and S(Pn) 

Conclusion 

The first leap Zagreb index has very good 

correlation with physical properties of 

chemical compounds like boiling point, 

entropy, DHVAP, HVAP and accentric factor. 

Relying on what stated above, we can 

conclude that leap indices for ortho-phenyl 

chain has shown good and quick response 

whereas leap indices for meta and para-

polyphenyl chains mostly behaved alike. We 

have computed and compared leap Zagreb 

indices and leap hyper-Zagreb indices of the 

de-rived graph of the subdivision of certain 

polyphenyls. These indices can also be 

computed for further molecular structures. 
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