Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Department of Mathematics, Bapuji Institute of Engineering and Technology, Davanagere-577004 and affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India

2 Department of Mathematics, Jain Institute of Technology, Davanagere-577003 and affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India

3 Department of Mathematics, Alliance College of Engineering and Design, Alliance University, Anekal-Chandapura Road, Bangalore, Karnataka, India

Abstract

Polyphenylene is a class of polycyclic aromatic compounds that has varied applications in biochemistry and biology. A numerical measure that defines the characteristics of a chemical structure is called topological index. In chemical graph theory, Estrada et al. proposed the degree-based topological indices known as Atom-bond connectivity index  [4]. A new version of  index is Fourth Atom-bond connectivity index  proposed by M. Ghorbani et al. [6]. A valuable predictive index in the study of the heat of formation of alkanes, the strain energy of cycloalkanes is  index. Based on this, numerous articles were reported. In this study, novel indices, Reciprocal Atom-bond Connectivity  and Reciprocal Fourth Atom-bond connectivity  indices were proposed and a comparative study of correlation with properties of octane isomers were given. It was observed that these indices showed good correlation for physico chemical properties of octane isomers. Subsequently, Reciprocal Atom-bond connectivity and Reciprocal Fourth Atom-bond connectivity indices for Polyphenylene structure of molecules were computed.

Graphical Abstract

Reciprocal Atom-bond connectivity and Fourth Atom-bond connectivity indices for Polyphenylene structure of molecules

Keywords

[1] K.N. Anil Kumar, N.S. Basavarajappa, M.C. Shanmukha, Malaya Journal of Mathematik, 2020, 8, 314-330.
[2] N. Biggs, E.K. Lloyd, R.J. Wilson, Oxford University Press., 1986, 1736-1936.
[3] N. De, J. Nanosci., 2016, 1-5.
[4] E. Estrada, L. Torres, L. Roriguez, I. Gutman, Indian J. Chem., 1998, 37, 849-855.
[5] W. Gao, W. F. Wang and M. R. Farahani, J. Chem., 2016, 1−8. DOI:10.1155/2016/3216327.
[6] M. Ghorbani, M.A. Hosseinzadeh, Optoelectron. Adv. Mater. Rapid Commun. 2010, 4, 1419-1422.
[7] A. Graovac, M. Ghorbani, M.A. Hosseinzadeh, J. Math. Nanosci. 2011, 1, 33-42.
[8] I. Gutman, N. Trinajstić, Chem Phys Lett., 1972, 17, 535-538.
[9] I. Gutman, K.C. Das, Math. Comput. Chem., 2004,50, 83-92.
[10] F. Harary, Addison-Wesely, Reading Mass, 1969.
[11] K.C. Das, Discrete Appl. Math., 2010, 158, 1181-1188.
[12] A. Usha , P. S. Rao, S. Y. Krishnan S, P.S. Ranjini, Int. J. Adv. Innov. Research, 2019, 6, 215-220.
[13] V. Lokesha, B. Shwetha Shetty, P.S. Ranjini, I. N. Cangul, A. S. Cevik, J. Inequal. Appl., 2013,1, 1-7.
[14] M. Imran, M. K. Siddiqui, M. Naeem, M. A. Iqbal, Symmetry, 2018, 10, 1-21.
[15] M. Randić, J. Am. Chem. Soc., 1975, 97, 6609-6615.
[16] M. Randić, New J. Chem., 1996, 20, 1001-1009.
[17] P.S. Ranjini, V. Lokesha, A. Usha, Int. J Graph Theory, 2013, 1, 116-121.
[18] S. Hayat, S. Wang, J.-B. Liu, Appl. Math. Model., 2018, 60, 164-178.
[19] M.C. Shanmukha, N.S. Basavarajappa, K.N. Anil Kumar, K.C. Shilpa, Lett. Appl. NanoBioScience, 2020, 9, 1595-1601.
[20] M.C. Shanmukha, N.S. Basavarajappa, A. Usha, K.C. Shilpa, J. Appl. Math. Comput., 2020, 1-14. DOI:10.1007/s12190-020-01435-3.
[21] N. Trinajstić, CRC Press, Boca Raton, FL. 1992.
[22] A. Usha, P.S. Ranjini, V. Lokesha, Harish, Discrete Math., 2018, 2, 1-4.
[23] D.B. West, Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.
[24] H. Wiener, J. Am. Chem. Soc., 1947, 69, 17-20.
[25] X. Zuo, M. Numan, S.I. Butt, M.K. Siddiqui, R. Ullah, U. Ali, Polycycl. Aromat. Comp., 2020, 1-10. https: //doi.org/10.1080/10406638.2020.1768413.
[26] M.C. Shanmukha, N.S. Basavarajappa, K.N. Anil Kumar, A. Usha, Jñānābha, 2020, 50, 89-101.
[27] D.-X. Li, J.-B. Liu, S. M Hosamani, B Basavanagoud, M. R. Farahani, J. of Comput. Theor. Nanoscience, 2017, 14, 2692-2695.