Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Review Article

Authors

1 Department of Pharmaceutical Technology and Management, Azerbaijan Medical University, Baku, Azerbaijan

2 Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan

3 Department of Anatomical Sciences, Maragheh University of Medical Sciences. Maragheh, Iran

Abstract

The current situation with the widespread of a socially dangerous virus from the genus Coronavirus (SARS-CoV-2) and the announcement of a pandemic in connection with this demand the creation of new antiviral drugs since no specific treatment and prophylaxis against this disease has yet been found. Among medicinal plants that are widespread and exhibit multidirectional pharmacological activity, licorice should be noted. The active components contained in licorice, i.e. more than 20 triterpenoids and about 300 flavonoids coupled with glycyrrhizic acid (GL) referred to by the term "glycyrrhizin", have been widely studied for a long time. GL acts indirectly, interferes with the penetration of the virus into the cell, affects the components (HMGB1 protein) necessary for normal viral reproduction, and potentiates the production of interferon γ and α. GL acts against SARS-associated coronavirus infection by inducing the synthesis of nitric oxide synthase, which inhibits viral replication. However, GL may also be helpful in acute respiratory distress syndrome. The combination of the multidirectional pharmacological effects of GL and its derivatives make the licorice-containing preparations promising components of complex antiviral therapy. Currently, research into licorice-containing dosage forms continues from the perspective of creating vaginal suppositories with a thick extract of licorice

Graphical Abstract

Prospects for the development of drugs with anti-viral activity based on licorice

Keywords

Main Subjects

[1] S.A. Amin, T. Jha, Eur. J. Med. Chem., 2020, 201, 112559. [crossref], [Google Scholar], [Publisher]   
[2] R. Khalilov, M. Hosainzadegan, A. Eftekhari, A. Nasibova, A. Hasanzadeh, H. Hosainzadegan,  Adv. Biol. Earth Sci., 2020, 5, 5-6. [Google Scholar], [Publisher]    
[3] R. Khalilov, M. Hosainzadegan, A. Eftekhari, A. Nasibova, A. Hasanzadeh, P. Vahedi, H. Hosainzadegan, Adv. Biol. Earth Sci., 2020, 5, 7-12. [Google Scholar], [Publisher]
[4] A. Eftekhari, M. Alipour, L. Chodari, S. Dizaj Maleki, M.R. Ardalan, M. Samiei, S. Sharifi, S. Zununi Vahed, I. Huseynova, R. Khalilov, E. Ahmadian, Microorganisms., 2021, 9, 232. [crossref], [Google Scholar], [Publisher]
[5] H. Rashidzadeh, H. Danafar, H. Rahimi, F. Mozafari, M. Salehiabar, M.A. Rahmati, S. Rahamooz-Haghighi, N. Mousazadeh, A. Mohammadi, Y.N. Ertas, A. Ramazani, I. Huseynova, R. Khalilov, S. Davaran, T.J. Webster, T. Kavetskyy, A. Eftekhari, H. Nosrati, M. Mirsaeidi,  Nanomedicine, 2021, 16, 497-516. [crossref], [Google Scholar], [Publisher]
[6] Z.F. Wang, J. Liu, Y.A. Yang, H.L. Zhu, Curr. Med. Chem., 2020, 27, 1997-2011. [crossref], [Google Scholar], [Publisher]
[7] Z.G. Sun, T.T. Zhao, N. Lu, Y.A. Yang, H.L. Zhu, Mini- Rev. Med. Chem., 2019, 19, 826-832. [crossref], [Google Scholar], [Publisher]
[8] K. Chen, R. Yang, F.Q. Shen, H.L. Zhu, Curr. Med. Chem., 2020, 27, 6219-6243. [crossref], [Google Scholar], [Publisher]
[9] J. Cinatl, B. Morgenstern, G. Bauer, P. Chandra, H. Rabenau, H.W. Doerr, Lancet, 2003, 361, 2045–2046. [crossref], [Google Scholar], [Publisher]
[10] G. Hoever, L. Baltina, M. Michaelis, R. Kondratenko, L. Baltina, G.A. Tolstikov, H.W. Doerr, J. Cinatl, J Med Chem, 2005, 48, 1256-1259.  [crossref], [Google Scholar], [Publisher]
[11] D. Moisy, S.V. Avilov., Y. Jacob, B.M. Laoide, X. Ge, F. Baudin, N. Naffakh, J.L. Jestin, J. Virol., 2012, 86, 9122–9133. [crossref], [Google Scholar], [Publisher]
[12] T. Utsunomiya, M. Kobayashi, R.B. Pollard, F. Suzuki, Antimicrob. Agents Chemother., 1997, 41, 551–556. [crossref], [Google Scholar], [Publisher]
[13] Y.J. Kwon, D.H. Son, T.H. Chung, Y.J. Lee, J. Med. Food, 2020, 23, 12-20. [crossref], [Google Scholar], [Publisher]
[14] Q. Wu, Y. Tang, X. Hu, Q. Wang, W. Lei, L. Zhou, J. Huang, Respirology, 2016, 21, 102-111. [crossref], [Google Scholar], [Publisher]
[15] Ch. Bailly, G. Vergoten, Pharmacol Ther, 2020, 214, 107618. [crossref], [Google Scholar], [Publisher]  
[16] M. Mrityunjaya, V. Pavithra, R. Neelam, P. Janhavi, P.M. Halami, P.V. Ravindra,  Front. Immunol., 2020, 11, 570122. [crossref], [Google Scholar], [Publisher]   
[17] A.I. Fayrushina, L.A. Baltina, N.I. Konovalova, P.A. Petrova, M.Y. Eropkin, Russian Journal of Bioorganic Chemistry, 2017, 43, 456-462. [crossref], [Google Scholar], [Publisher]   
[18] J. Geiler, M. Michaelis, P. Naczk, A. Leutz, K. Langer, H-W. Doerr, J. Cinatl Jr, Biochem. Pharmacol., 2010, 79, 413–420. [crossref], [Google Scholar], [Publisher]   
[19] H.J. Kim, J.Y. Seo, H.J. Suh, S.S. Lim, J.S. Kim, Nutrition Research and Practice, 2012, 6, 491-498. [crossref], [Google Scholar], [Publisher]   
[20] R. Li, K. Wu, Y. Li, X. Liang, K.P. Lai, J. Chen, Brief Bioinform. 2021, 22, 1161-1174. [crossref], [Google Scholar], [Publisher]    
[21] H. Karimi-Maleh, B.G. Kumar, S. Rajendran, J. Qin, S. Vadivel, D. Durgalakshmi, F. Gracia, M. Soto-Moscoso, Y. Orooji, F. Karimi, J. Mol. Liq.2020,314, 113588. [crossref], [Google Scholar], [Publisher]    
[22] O.Y. Selyutina, I.E. Apanasenko, A.V. Kim, E.A. Shelepova, S.S. Khalikov, N.E. Polyakov. Colloids and Surfaces B: Biointerfaces., 2016, 147, 459-466. [crossref], [Google Scholar], [Publisher]     
[23] M. Ozturk, V. Altay, E. Altundağ, S.J. Ibadullayeva, B. Aslanipour, T.M. Gönenç, InPlant and Human Health, 2018, 1, 197-266. [crossref], [Google Scholar], [Publisher]     
[24] S. Ismayilova-Abduyeva, S. Ibadullayeva, K. Panah Muradov, In Azerbaijan. Development, 2019, 6.
[25] S.G. Gulahmadov, N.F. Abdullaeva, N.F. Guseinova, A.A. Kuliev, I.V. Ivanova, M. Dalgalarondo, J.M. Chobert, T. Haertlee, Applied Biochemistry and Microbiology, 2009, 45, 266-271. [crossref], [Google Scholar], [Publisher]     
[26] M.N. Veliyeva, S.J. Mekhraliyeva, A.E. Musayeva, E.A. Kuliyeva, P.M. Veliyev, Sciences of Europe, 2019, 1.
[27] S. Mehraliyeva, M. Valiyeva, N. Abbasli, T. Suleymanova, S. Musayeva, S. Davaran, R. Khalilov, A. Eftekhari, Eurasian Chem. Commun., 2021, 26, 170-179. [crossref], [Google Scholar], [Publisher]     
[28] Y.J. Kwon, D.H. Son, T.H. Chung, Y.J. Lee, Journal of Medicinal Food, 2020, 23, 12-20. [crossref], [Google Scholar], [Publisher]     
[29] J.B. Harborne, H. Baxter, John Wiley & Sons, 2001.
[30] K. Morteza-Semnani, M. Saeedi, B. Shahnavaz, Journal of Cosmetic Science, 2003, 54, 551-558.
[31] U.G. Aliyeva, Perm Medical Journal, 2020, 37, 41-47. [crossref], [Google Scholar], [Publisher]     
[32] C. Kenyon, R. Colebunders, T. Crucitti, American journal of obstetrics and gynecology, 2013, 209, 505-523. [crossref], [Google Scholar], [Publisher]     
[33] N.A. Mamedov, D. Egamberdieva, Plant and Human Health, 2019, 3, 1-21. [crossref], [Google Scholar], [Publisher]     
[34] S.E. Musayeva, F.I. Madatli, M.N. Veliyeva, Journal of Critical Reviews, 2020, 7, 525-527. [crossref], [Google Scholar], [Publisher]