DOI: 10.22034/ecc.2022.342801.1469

FULL PAPER

Synthesis and characterization of TiO₂, Ag₂O, and graphene oxide nanoparticles with polystyrene as a nonocomposites and some of their applications

Zeyad Zaid Almarbd*[©] |Nada Mutter Abbass[©]

Department	of	Chemistry,	College	of Science,	
Baghdad uni	ver.	sity, Baghda	d, Iraq		,

In this study, metal oxides nanoparticles TiO_2 and Ag_2O NPs were synthesized by green method using sider leaves extract. The nano-composites were prepared from condensation reaction of polystyrene (PS), TiO_2 , Ag_2O , and (GO) by a simple mixing method. These structures as (PS/GO/Ag_2O) and (PS/TiO₂/Ag₂O) were characterized by X-rays diffraction, FE-SEM, TEM, and thermal analysis. The measurements proved that all the components, of polystyrene (PS), graphene oxide (GO), TiO_2 , and Ag_2O were present and that the size of the nanoparticles within nano-scale. Nano-composites were tested in biological activity applications as anti-bacterial and anti-fungal, the results proved that (PS/GO/Ag_2O) nano-composites gave a higher inhibition value than (PS/TiO₂/Ag₂O) nano-composites with bacteria, but it gave the result when applied to fungi.

*Corresponding Author:KEYWORDSZeyad Zaid AlmarbdNano-composite; plystyrene; graphene oxide; Ag2O; TiO2; metalrel.:+9647822000851oxide nanoparticles.

Introduction

The main parameters of nanoparticles are their shape, their size, and morphological substructure of the substance (including the aspect ratio where appropriate) [1].

Depending on their size, shape, and chemical and physical properties, nanoparticles can be categorized into different groups, some of which are considered semiconductor nanoparticles, ceramic nanoparticles, polymeric nanoparticles, carbon-based nanoparticles, lipid-based nanoparticles, and metal nanoparticles [2].

Nano-sized metal oxides have many outstanding properties, including a high removal capacity and heavy metals selectivity. As promising adsorbents to heavy metals, they have great potential. Metal oxide-based nano-materials include manganese oxides, nano-sized iron oxides, titanium oxides, cerium oxides, ZnOs, magnesium oxides, aluminum oxides, and zirconium oxides [3].

Titanium oxide (TiO_2) is further used in a variety of applications such as disinfection agents and white pigment, food color flavor enhancer additives, and decomposition of organic compounds [4], [5].

Titanium oxides (TiO_2) nano-metal is relatively less expensive than any other nanomaterial and exhibits good thermal and chemical stability as well as low human toxicity [6].

Silver oxide (Ag_2O) nanoparticles are spherical or faceted high surface area oxide magnetic nanostructured particles. Silver oxide nanoparticles are similarly available in coated and dispersed high purity, ultra-high purity, and transparent forms [7].

Graphene and its oxide have been widely used due to many industrial applications and in scientific research which keeps pace with the continuous demand for materials around the world, since graphene oxide has different properties including the electrical, mechanical, etc. It is can be prepared by graphite oxidation [8].

Polymers are extensively used in applications because they are lightweight, easily processed, and have design flexibility. Polymer composites, consisting of the additional polymer phase and an generally component(s), balance performance, mechanical properties, cost, and processing. The additional component, or filler, may be of reinforcing or nonreinforcing type. Reinforcing fillers aid in improving mechanical properties and abrasion resistance whereas non-reinforcing fillers may decrease the cost, modify density, improve barrier properties, or change color [9].

Experimental part

Materials

The materials used in the preparation of nano-composites were supplied by several companies:

- Silver nitrate (AgNO₃), Sodium nitrite (NaNO₂), and Potassium permanganate (KMnO₄) from CDH.

- Titanium isopropoxideTi $[OCH(CH_3)_2]_4$, Ammonium Hydroxide(NH₄OH), Sulfuric acid (con.) (H₂SO₄), and Hydrogen peroxide H₂O₂ fromSigma-Aldrich.

- Carbon tetra chloride(CCl₄) and Graphite from Fasco Expoxies.

Preparation of sider leaves aqueous extract

Typically, 150 ml of distilled water was added to 4 g of Sidr leaf extract with heating and stirring for 15 minutes, then, filtered the solution for utilizing in the synthesis [10].

Synthesis of metal oxides nanoparticles

A- Synthesis of Ag_2O nanoparticles by green method

A quantity of (250) ml of ionic water was added to (2,2) of silver nitrate, the solution was heated to 100 °C with stirring for 30 minutes, after that, the aqueous extract of Sidr leaves prepared in the previous way was added slowly to the silver nitrate solution by a dropper until the color changed. The resulting mixture was heated to 400 °C for two hours and the solution was allowed to cool at room temperature. Finally, the mixture was dried and the precipitate formed [11].

B- Synthesis of TiO_2 nanoparticles by sol-gel method

Fifteen mL of acetic acid was mixed with 150 mL of distilled water and stirred for 30 min, and then 5 mL of titanium tetra isopropoxide was added slowly, and stirred for 2 hours to get clear solution.

The above solution was (ultrasonicated) for 30 min, and then kept in the dark for 24 hours, after that the mixture retain in a hot oven at 80 °C for 3 hours to get a gel, then the gel left in an oven at 100 °C until dry.

The last mixture was dried and calcinated at 400 °C for 3 hours to get the white color of TiO_2 nanoparticles [12].

C- Synthesis of graphene oxide nanoparticles (Hummers' method)

Graphene oxide (GO) was prepared according to Hummers' method, 1 g of graphite was added into cool (50) ml concentrated H_2SO_4 and stirred in an ice bath for 15 minutes. A quantity of (4) g from (NaNO₂) and (6) g of (KMnO₄) were added to the above-mentioned solution with stirred in an ice bath for 6 hours. The ice-bath removed and the temperature of the mixture was kept at 35 °C in water path for 30 minutes to became the mixture pasty (deep red- brown in color). 50 ml of DI water was then added into above mixture. The temperature then raised to 90-98 °C. The above mixture was diluted by addition (250) ml warm DI water. After that, (30) ml of H₂O₂ was added until solution turned bright [13].

Synthesis of nano-composites

A- Synthesis of (Polystyrene/TiO₂/Ag₂O) nanocomposites

Typically, 25 ml of CCl₄ was added into (1) g of polystyrene and the mixture was refluxed for 1 hour at 50 °C (**Solution A**), 0.1 gm of TiO₂ NPs was mixed with (0.1) gm of Ag₂O NPs into (10) ml of CCl₄. Then, the mixture was exposed to ultrasound for 5 minutes to ensure mixing (**Solution B**).

Mixture solution B was added to solution A (its above) and refluxed at 50 °C for 5 hours, after that, the mixture was left to cool at room temperature and finally collected [14].

B- Synthesis of (polystyrene/GO/Ag₂O) nanocomposites

Typically, 25 ml of CCl4 was added into (1) g of polystyrene and the mixture was refluxed for 1 hour at 50 °C (**Solution A**), (0.1) gm of GO NPs was mixed with (0.1) gm of Ag₂O NPs

into (10) ml of CCl₄. Then, the mixture was exposed to ultrasound for 5 minutes to ensure mixing (**Solution B**).

Mixture solution B was added to solution A (its above) and refluxed at 50 °C for 5 hours, after that, the mixture was left to cool at room temperature and finally collected [15].

Results and discussion

X-Ray diffraction Of PS/TiO₂/Ag₂O nanocomposites

X-Ray diffraction pattern in Figure (1) of Polystyrene/TiO₂/Ag₂O nano-composites indicated the polymer diffraction peaks at [°2Th.] 20.5040° and 27.6154° corresponding to (244.28°) and (185.27°) planes were observed, while XRD revealed TiO_2 nanoparticles (NPs) diffraction peaks at 26.0445°, 48.20°, 63.40°, and 76.3232° corresponding to 267.41, 224.54°, 189.33°, and 52.07°, respectively as compared with the standard reference for Tio2 NPs [16].

Moreover, XRD indicated in Figure 1 Ag₂O NPs diffraction peaks at [°2Th.] 32.1599°, 38.5212°, 46.0770°, and 54.7755 corresponding to 406.37, 87.34, 168.48, and 76.71, respectively as compared with the standard reference for Ag₂O NPs [17].

The presence of $PS/TiO_2/Ag_2O$ nanocomposites in X-Ray diffraction is solid evidence for the success of the reaction, as presented in Table 1. Page | 1036

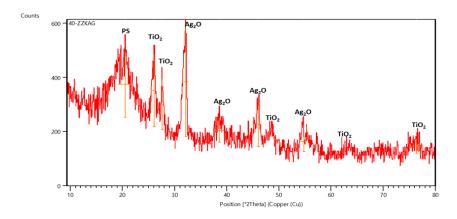


FIGURE 1 XRD pattern of (PS/TiO₂/Ag₂O) Nano-composites

Eurasian Chemical

Communications

D) SAMI

	Pos. [°2Th.]	FWHM Left [°2Th.]	Matched by	Particle size	Average particle size (nm)
	20.5040	2.7552	Polymer	3.06 (nm)	
	26.0445	0.6888	TiO ₂ NPs	12.37 (nm)	
	27.6154	0.3936	Polymer	21.72 (nm)	
	32.1599	0.8856	Ag ₂ O NPs	9.75 (nm)	
	38.5212	1.5744	Ag ₂ O NPs	5.59 (nm)	12.02 (mm)
	46.0770	0.7872	Ag ₂ O NPs	11.46 (nm)	13.92 (nm)
	48.2000	0.3936	TiO ₂ NPs	23.10 (nm)	
	54.7755	1.1808	Ag ₂ O NPs	7.92 (nm)	
	63.4000	0.2236	TiO ₂ NPs	43.64 (nm)	
-	76.3232	2.3616	TiO ₂ NPs	4.47 (nm)	

TABLE 1 XRD record of (PS/TiO₂/Ag₂O) nano-composites

X-Ray diffraction Of PS/GO/Ag₂O nanocomposites

Figure 2 displays the XRD pattern for PS/GO/Ag₂O nano-composites which described the graphene oxide diffraction peaks at [°2Th.] 13.3°, and 42.84° corresponding to 94.31 and 42.27, while its revealed polymer diffraction peaks at [°2Th.]

23.91° corresponding to 78.84, as compared with the standard reference for GO NPs and polystyrene [18], [19].

Moreover, XRD in Figure (2), depicts Ag_2O NPs diffraction peaks at [°2Th.] 32.20°, 34.8866°, 46.1155°, 53.4483°, 67.2397°, and 76.6936°, respectively corresponding to 227.26, 556.55, 271.30, 134.53, 71.11 and 131.26, as indicated in Table 2.

Eurasian Chemical Communications Page | 1037

(D) SAMI

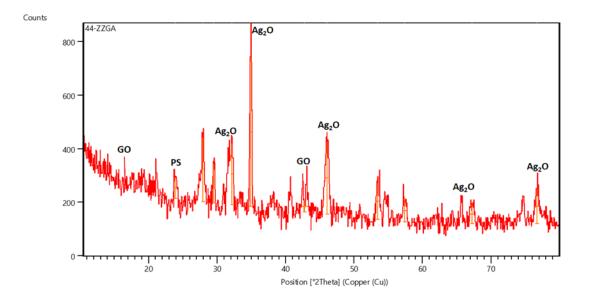


FIGURE 2 XRD pattern of (PS/GO/Ag₂O) Nano-composites

Pos. [°2Th.]	FWHM Left [°2Th.]	Matched by	Particle size	Average particle size
13.3532	7.6883	GO	1.09 (nm)	
23.9114	0.3936	Polymer	21.56 (nm)	
29.5265	0.2952	Ag ₂ O NPs	29.08 (nm)	
32.2072	0.3936	Ag ₂ O NPs	21.95 (nm)	
34.8866	0.2460	Ag ₂ O NPs	35.37 (nm)	10.10 (nm)
42.8410	0.9840	GO	9.06 (nm)	19.18 (nm)
46.1155	0.5904	Ag ₂ O NPs	15.28 (nm)	
53.4483	0.3936	Ag ₂ O NPs	23.61 (nm)	
67.2397	0.5904	Ag ₂ O NPs	16.89 (nm)	
76.6936	0.5904	Ag ₂ 0 NPs	17.93 (nm)	

TABLE 2 XRD record of (PS/GO/Ag₂O) nano-composites

Thermogravimetric analysis (TG) of *PS/TiO₂/Ag₂O* and of *PS/GO/ Ag₂O* nano-composites

Thermal decomposition of prepared nanocomposites under nitrogen atmosphere, the heating range (35-800) °C and their atmospheres are displayed in Figure 3; the following results were explained according to the analytical suggestions mentioned in literature [20]:

Thermogravimetric analysis of PS/TiO₂/Ag₂O nanocomposites

1- The first stage: At 35-120 °C with a weight loss percentage of 3.32% attributed to the loss of water (absorbed from the

atmosphere) which adsorbed physically of nano-composite due to the fact that nanomaterial have very high surface area.

2- The second stage: At 120-440 °C and third stage at 440-800 °C with a total weight (percentage) loss equal to 85.77% (found) corresponding 83.3% (calculated), these stages include the starting of styrene unit loss and there is decomposition of carbon skeleton of the polymer.

3- The third stage: At temperature more than 800 °C with weight (percentage) of 14.229% (found) corresponding 16.6% (calculated). This stage could be attributing to the amount of TiO_2 and Ag_2O NPs.

It is worthy notes that the obtained weight percentage (Wt%) of the polymer and metal oxide nanoparticles (TiO₂, Ag₂O) are in agreement with the calculated weight percentage (Wt%) ones, therefore, this was considered as a good evidence for the reaction success, as indicated in Table 4.

Thermogravimetric analysis of PS/GO/Ag₂O nano-composites

Thermogravimetric analysis of prepared nano-composites in Figure 4 depicts four stages of weight loss, and the following results were explained according to analytical suggestions mentioned in literature [21]:

1- The first stage: At 35-120 °C with a weight loss percentage of 7.30% attributed to the loss of water (absorbed from the atmosphere) which adsorbed physically of nano-composite due to the fact that nano-material have very high surface area.

2- The second stage: At 120-440 °C and third stage at 440-800 °C with a total weight (percentage) loss equal to 88.23% (found) corresponding 83.3% (calculated), these stages include the starting of styrene unit loss and there are decomposition of carbon skeleton of the polymer.

3- The third stage: At temperature more than 800 °C with weight (percentage) of 11.72% (obtained) corresponding 16.6% (calculated). This stage could be attributing to the residue amount of GO and Ag_2O NPs.

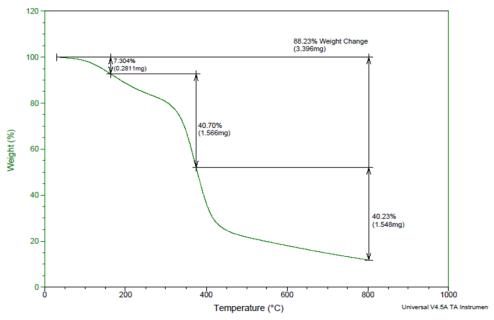
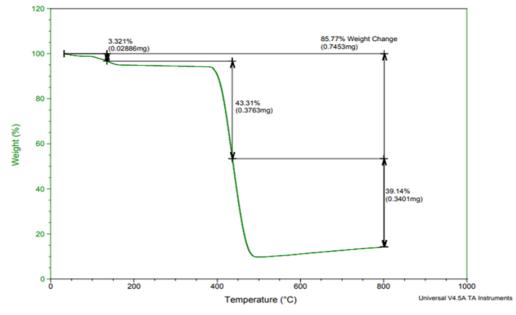



FIGURE 3 TG analysis of (PS/GO/Ag₂O)

Eurasian <u>Chemical</u> <u>Communications</u> Page | 1039

() SAMI

FIGURE 4 TG analysis of (PS/TiO₂/Ag₂O)

Differential scanning calorimetry (DSC) of PS/TiO₂/Ag₂O Nano-composites

Differential scanning calorimetry (DSC) analysis of the prepared $PS/TiO_2/Ag_2O$ nanocomposites included two endothermic stages: First, at 177.09 °C equal Δ H to 568 J/g for $PS/TiO_2/Ag_2O$, at 353.82 °C equal Δ H to 429.3 J/g for $PS/GO/Ag_2O$ nano-composites, the glass transition of polystyrene in nanocomposites was considered as compared with the standard reference of polystyrene which is 100 °C [22]. Second, 400.56°C, the conceded melting point of polystyrene in nano-composites was compared with the standard reference of polystyrene which was 270°C. This was another indication of the reaction success, as displayed in Figure 5.

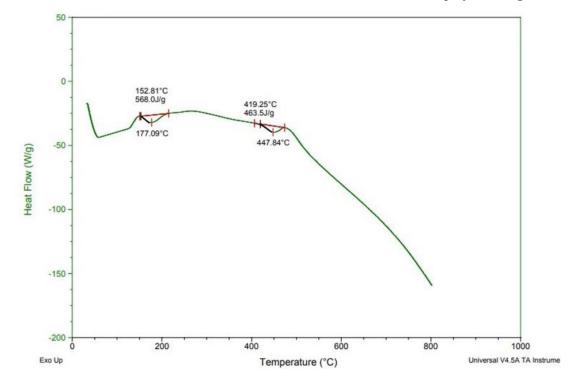
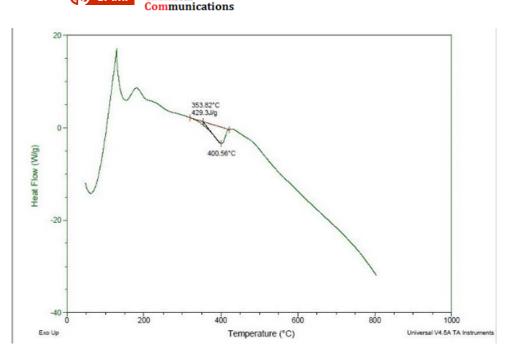



FIGURE 5 DSC/TGA of (PS/TiO₂/Ag₂O) nano-composite

Eurasian Chemical

SAM

FIGURE 6 DSC/TGA (PS/TiO₂/Ag₂O) nano-composites

The field emission scanning electron microscopy (FE-SEM) of PS/TiO₂/Ag₂O and PS/GO/Ag₂O nanocomposites

The Field Emission Scanning Electron Microscopy (FE-SEM) measurements were conductive to $PS/TiO_2/Ag_2O$ and $PS/GO/Ag_2O$, as displayed in Figures 6 and 7. The FE-SEM reveals that two different nanostructures, which are irregular sphere like those ones with nano-scale range, sheet like nanoparticles with a thickness of approximately 30-78 nm in PS/TiO₂/Ag₂O, these nano-structures means that the prepared nano-composite is within the nano-scale [23].

Moreover, FE-SEM measurement indicated the surface roughness of nano-composite with a high number of nano-shrinkage about 20 nm. The presence of Ag₂O, TiO₂ and GO NPs causes surface roughness of polymer.

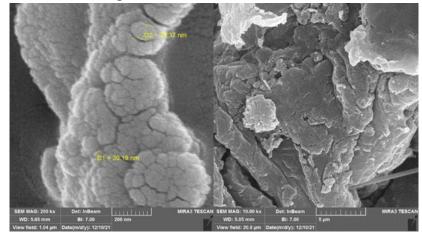


FIGURE 7 FE-SEM of (PS/TiO₂/Ag₂O) nano-composites

Eurasian Chemical Communications

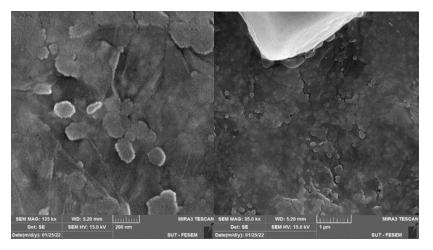


FIGURE 8 FE-SEM of (PS/GO/Ag₂O) nano-composites

Application

The biological activities of prepared nanocomposites were tested against two types of bacteria (Klebsiella pneumoniae) and (Staphylococcus aureus) and demonstrated that nano-composites have a different effects on inhibiting the growth of the studied bacteria. This is due to the ability of these nano-composites to the production of free radicals leading to the oxidative stress, and thus damage to proteins, DNA, and cell membranes as well as binding to cytosolic proteins, DNA, and enzymes. This interaction cause decreased inhibiting respiratory chain, ATP production, and metabolic pathways [24, 25].

The results of the bacterial tests proved that PS/GO/Ag₂O nano-composite was more inhibiting bacteria (*Staphylococcus aureus*) with an effect size of 29 mm than $PS/TiO_2/Ag_2O$ nano-composite, which had an effect of 16 mm, while the inhibition effect on bacteria (*Klebsiella pneumoniae*) was $PS/GO/Ag_2O$ nano-composite with a size of 16 mm less than $PS/TiO_2/Ag_2O$ nano-composite with a size of 18 mm, as displayed in Figures 8 and 9.

- (D) SAMI

Page | 1041

The anti-fungal activity of all nanocomposites synthesized by the green and solgel method was studied on *Candida Albicans*, the results indicated that all nano-composites had strong and medium fungal activity. The results showed that the PS/ TiO₂/ Ag₂O nanocomposites gave the strongest against *Candida Albicans* and the size of hole (affecting the bacteria) was approximately 18 nm, as compared with 15 nm for PS/GO/Ag₂O nano-composites.

FIGURE 9 Biological test (Staphylococcus aureus) of (PS/GO/Ag_2O) and PS/TiO_2/Ag_2O nano-composites

Eurasian Chemical

(D) SAMI

FIGURE 10 Biological test (Klebsiella) of (PS/GO/Ag₂O) and PS/TiO₂/Ag₂O nano-composites

Conclusion

The results proved the validity of the proposed method for nano-composites, as it gave the size of nanoparticles based on FE-SEM approximately 20 nm in PS/GO/Ag₂O nano-composite and 30 to 78 nm in PS/TiO₂/Ag₂O nano-composite and these two sizes are within the nano-scale. These nano-composites were used in the biological applications of bacteria and fungi, Grampositive (*Staphylococcus aureus*) and Gramnegative (*Klebsiella*) bacteria were selected with (*Candida parapsilosis*).

The results indicated that PS/GO/Ag₂O nano-composite gave a size of inhibition against bacteria (Staphylococcus aureus) 29 mm and against bacteria (Klebsiella) 16 mm, while the results showed less inhibition with PS/TiO₂/Ag₂O nano-composite, in which the inhibition size against bacteria (Staphylococcus aureus) was 16 mm and against bacteria (Klebsiella) 18 mm. As for the effect of nano-composites on Candida parapsilosis, the PS/GO/Ag₂O nano-composite was less than the inhibition of PS/TiO₂/Ag₂O nano-composite, which had the inhibition size of 15 mm and 18 nm, respectively.

Acknowledgments

This research was supported by Dr. Nada Mutter Abbass, University of Baghdad, College of science, Deparetment of Chemistry. We thank our colleagues who provided insight and expertise that assisted the research, we also do not forget the support of the family during the research period

Orcid:

Zeyad zaid Almarbd: https://orcid.org/0000-0002-9771-5517 Nada Mutter Abbass: https://orcid.org/0000-0002-2289-3941

References

M. Mazilu, V. Musat, P. Innocenzi, T. Kidchob, D. Marongiu,*Part. Sci. Technol.*, **2012**, *30*, 32-42. [crossref], [Google Scholar], [Publisher]

[2] I. Gehrke, A.G.A. Somborn-Schulz, *Nanotech. Sci. Appl.*, **2015**, *8*, 1-17. [crossref], [Google Scholar], [Publisher]

[3] E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, *Chem. Soc. Rev.*, **2012**, *41*, 2740-2779. [crossref], [Google Scholar], [Publisher]

[4] T. Marino, T. Marino, M. Boerrigter, M. Faccini, C. Chaumette, L. Arockiasamy, J. Bundschuh, A. Figoli, *Application of Nanotechnology in Membranes for Water Treatment*, CRC Press, **2017**, 127-146. [crossref], [Google Scholar], [Publisher]

[5] S. Khameneh Asl, B. Mohammadi, A. Khataee, *Chem. Methodol.*, **2020**, *4*, 258-275. [crossref], [Google Scholar], [Publisher]

[6] A. Derakhshan-Nejad, M. Cheraghi, H. Rangkooy, R. Jalillzadeh Yengejeh, *Chem. Methodol.*, **2021**, *5*, 50-58. [crossref], [Google Scholar], [Publisher]

[7] M. Martinez, P. Silley, F. Cunningham, J. Elliott, P. Lees, *Comparative and Veterinary Pharmacology*, Eds. Berlin, Heidelber, Springer Nature, **2010**, 227–264. [crossref], [Google Scholar], [Publisher]

[8] K.S.S.K. Muhamad, F. Mohamed, S. Radiman, A. Hamzah, S. Sarmani, K.K. Siong, M. Samudi Yasir, I. Abdul Rahman, N.R.A. Md. Rosli, "Synthesis and characterization of exfoliated graphene oxide", *AIP Conference Proceedings* 1784, 040013 (**2016**). [crossref], [Google Scholar], [Publisher]

[9] K. Yano, A. Usuki, T. Kurauchi, O.J. Kamigaito, *Polym. Sci., Part A: Polym. Chem.,* **1993**, *31*, 2493-2498. [crossref], [Google Scholar], [Publisher]

[10] A. El-Ansary, A. Warsy, M. Daghestani, N.M. Merghani, A. Al-Dbass, W. Bukhari, B. Al-Ojayan, E.M. Ibrahim, A.M. Al-Qahtani, R.S. Bhat, *Mater. Res. Express*, **2018**, *5*, 025033. [crossref], [Google Scholar], [Publisher]

[11] E.M. Halawani, *J. Biomater. Nanobiotechnol.*, **2016**, *8*, 22-35. [crossref], [Google Scholar], [Publisher]

[12] R.S. Dubey, K.V. Krishnamurthy, S. Singh, *Results Phys.*, **2019**, *14*, 102390. [crossref],[Google Scholar], [Publisher]

[13] B. Paulchamy, G. Arthi, B.D. Lignesh, *J. Nanomed. Nanotechnol.*, **2015**, *6*, 1-4. [crossref], [Google Scholar], [Publisher]

[14] A.M. Motawie, S.M. Ahmed, E.A. EL-Sabbagh, N.A.Mansour, D.E. Abulyazied, E.S. Ali, *Egypt. J. Chem.*, **2017**, *60*, 261-276. [crossref], [Google Scholar], [Publisher]

[15] L. Yang, W. Zhen, *Adv. Polym. Technol.*, **2020**, *2020*, 9364657. [crossref], [Google Scholar], [Publisher]

[16] T.P. Teng, T.C. Teng, S.I. Pan,*Int. J. Photoenergy*, **2012**, *2012*, 739734. [crossref], [Google Scholar], [Publisher] [17] Z.H. Dhoondia, H. Chakraborty. *Nanomater. Nanotechnol.*, **2012**, *2*, 15. [crossref], [Google Scholar], [Publisher]

[18] R. Siburian, H. Sihotang, S.L. Raja, M. Supeno, C. Simanjuntak, *Asian J. Chem.*, **2018**, *34*, 182. [crossref], [Google Scholar], [Publisher]

[19] G. Huang, J. Xu, P. Geng, J. Li, *Minerals*, **2020**, *10*, 452. [crossref], [Google Scholar], [Publisher]

[20] G.M. Herrera-Sandoval, D.B. Baez-Angarita, S.N. Correa-Torres, O.M. Primera-Pedrozo, S.P. Hernández-Rivera, *Sci. Res. Publ.*, **2013**, *4*. [crossref], [Google Scholar], [Publisher]

[21] R. Kumar, R. Singh, A. Gurjar, R. Kashyap,
M. Kumar, D. Kumar, *AIP Conf.Proc.*, 2019,
2142, 040015, [crossref], [Google Scholar],
[Publisher]

[22] A. Panwar, V. Choudhary, D.K. Sharma, *J. Reinf. Plast. Compos.*, **2013**, *32*, 740–757. [crossref], [Google Scholar], [Publisher]

[23] M.Q. Hamzah, S.O. Mezan, A.N. Tuama,
A.H. Jabbar, M.A. Agam, *Int. J. Eng. Technol.*, **2018**, 7, 538-543. [crossref], [Google Scholar], [Publisher]

[24] A. Moghaddam, H. Zamani, H. Karimi-Maleh, *Chem. Methodol.*, **2021**, *5*, 373-380. [crossref], [Google Scholar], [Publisher]

[25] B. Zare, E. Ameri, M. Sadeghi, *Chem. Methodol.*, **2021**, *5*, 308-316. [crossref], [Google Scholar], [Publisher]

How to cite this article: Zeyad zaid Almarbd*, Nada Mutter Abbass. Synthesis and characterization of TiO₂, Ag₂O, and graphene oxide nanoparticles with polystyrene as a nonocomposites and some of their applications. *Eurasian Chemical Communications*, 2022, 4(10), 1033-1043. **Link:**

http://www.echemcom.com/article_15131 8.html

Copyright © 2022 by SPC (<u>Sami Publishing Company</u>) + is an open access article distributed under the Creative Commons Attribution License(CC BY) license (<u>https://creativecommons.org/licenses/by/4.0/</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.