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One of the classifications of peripheral neuropathy causes is due 
to the use of chemotherapeutic agents called chemotherapy-
induced peripheral neuropathy (CIPN) conditions. 
Administration of platinum groups resulted in changes in the 
expression and function of Transient Receptor Potential 
Vanilloid type 1 (TRPV1) as well as altered neuronal excitation 
and propagation of nociceptive sensory signals. Moringa oleifera 
and Caesalpinia sappan L. are reported for their neuroprotective 
effect. In this study, we conducted a molecular docking study for 
63 secondary metabolites of Moringa oleifera and 27 secondary 
metabolites of Caesalpinia sappan L. using an in silico approach 
targeting TRPV1 (PDB ID: 5IS0) using AutoDockVina software. 
ADMET characteristics were predicted using the SwissADME and 
pkCSM Online Tool. This study found that the binding energy of 
the six metabolites of Moringa oleifera (quercetin, ellagic acid, 
lutein, luteolin, rhamnetin, and 3-O-beta-D-Glucopyranosyl 
sitosterol) and three metabolites of Caesalpinia sappan L. 
(ombuin, phanginin I, and phanginin J) lower than native ligand 
through TRPV1 protein. This compounds are potential to be 
developed as a candidate for antagonist TRPV1. Furthermore, 
this study became basic data for developing TRPV1 antagonist-
targeted therapy, especially in CIPN conditions. 
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Introduction 

Neuropathic pain is associated with various 

conditions and syndromes due to central or 

peripheral nervous system damage [1]. 

One of the causes of peripheral 

neuropathy is due to the use of 

chemotherapeutic agents. The incidence of 

chemotherapy-induced peripheral 

neuropathy (CIPN) in patients undergoing 

cancer treatment is about 30-40% [2], and 

the platinum group has the most remarkable 

prevalence rate, up to 70% [3]. 

There are several clinically recommended 

drugs for neuropathic pain, such as tricyclic 

antidepressants (TCAs), calcium channel α2-δ 

ligands, serotonin-norepinephrine reuptake 

inhibitors (SSRIs), and topical lidocaine [4,5]. 

It is known that most therapeutic options 

bring additional problems related to side 
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effects and the lifelong use of drugs due to 

their lack of contribution to prevent disease 

progression. Thus, further study to reveal the 

key signaling pathway in the progression of 

CIPN and explore new therapeutic 

approaches is still needed. 

In recent years, transient receptor 

potential vanilloid type 1 (TRPV1) 

antagonists have been widely studied to 

develop treatments for various diseases, 

particularly those related to neurogenic pain 

and inflammation, such as anti-inflammatory, 

antineoplastic, and antinociceptive [6-8]. 

According to the increasing evidence, TRPV1 

plays an important role in the CIPN 

progression. Platinum compounds, such as 

cisplatin and oxaliplatin, alter the expression 

and function of TRPV1 in rat DRG neurons 

[9,10]. 

The increased reactive oxygen species 

(ROS) production directly activates TRPV1 

channels [11]. 

TRPV1 activation in the DRG alters 

neuronal excitation and the propagation of 

nociceptive sensory signals [12]. 

Previous findings confirm that TRPV1 

activation causes chronic pain through 

depolarization and stimulation of the NMDA 

receptor subunit NR2B (NMDAR2B) in the 

dorsal horn of the spinal cord [13,14]. 

Furthermore, TRPV1 inhibition potentially 

suppresses the progression of neuropathic 

pain [15,16]. 

Moringa oleifera is a medicinal plant 

distributed in many tropical regions. Studies 

on the pharmacological activity of Moringa 

oleifera have been reported its anti-

inflammatory, analgesic, antioxidant, 

anticancer, hepatoprotective, 

neuroprotective, antidiabetic, and 

antimicrobial effects [17,18]. 

Active phytochemicals found in Moringa 

oleifera include specific glucosinolates, 

carotenoids, flavonoids and phenolic acids, 

polyunsaturated fatty acids, minerals, 

tocopherols, and folate [19]. Previous studies 

show that Moringa oleifera leaves extract 

exhibits an antinociceptive effect confirmed 

through hot-plate, writhing, formalin tests 

[20], tail flick, and tail immersion tests in rats 

[21]. 

The ethanolic extract of Moringa oleifera 

also shows an antinociceptive effect on 

vincristine-induced peripheral neuropathy, 

possibly by suppressing the levels of 

proinflammatory cytokines such as IL-6, 

TNFα, and IL-1β [22]. 

Caesalpinia sappan L., a member of the 

Fabaceae family (subfamily 

Caesalpinioideae), is reported to be 

pharmacologically active as an anticancer, 

antimicrobial, antiparasitic, anti-

inflammatory, antiarthritic, neuroprotection 

agent [23]. 

Caesalpinia sappan L. is often used for its 

stem bark and it is reported to contain 

bioactive ingredients such as protosappanin, 

brazilin, chalcone, xanthones, flavones, and 

homoisoflavonoids [24]. 

In addition, it is reported that Caesalpinia 

sappan L. extract exhibits an antinociceptive 

effect confirmed by in vivo writhing test [25]. 

The findings above demonstrate that 

Moringa oleifera and Caesalpinia sappan L. 

are potential plant resources for developing 

new therapeutic compounds for neuropathic 

pain. 

However, there needs to be more studies 

elaborating on the meaningful molecular 

interaction between secondary metabolites of 

the Moringa oleifera and Caesalpinia sappan 

L. and TRPV1 channel. Therefore, in silico 

screening using TRPV1 nociceptor channels 

as a molecular target was conducted to 

evaluate the activity of secondary metabolites 

Moringa oleifera and Caesalpinia sappan L. in 

inhibiting TRPV1 activity so that may 

modulate the progression of CIPN conditions. 

In this study, molecular docking was carried 

out on the secondary metabolites of 

Caesalphinia sappan L. and Moringa oleifera. 

Molecular docking was also used to 

investigate the interactions between protein 

and ligand and the appropriate conformation 
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of compounds in the prepared protein. In 

addition, physicochemical and toxicity 

analyzes were utilized to obtain compounds 

that met the physicochemical criteria. 

Experimental 

Ligand and protein preparation 

The structure of TRPV1 protein was 

downloaded on https://www.rcsb.org in 

Protein Data Bank (PDB) format code 5IS0 

(chain A). Protein preparation was performed 

using AutoDockTools version 1.5.6 and was 

saved as PDBQT. Meanwhile, the list of test 

ligands were the secondary metabolites of 

Caesalpinia sappan L. and Moringa oleifera 

obtained from KNApSAcK data 

(http://www.knapsackfamily.com). 

All SMILES formats of test ligands were 

downloaded from PubChem website 

(http://pubchem.ncbi.nlm.nih.gov). 

OpenBabel online was used to convert the 

ligands from SMILES into PDBQT format. 

Docking protocol validation was analyzed 

using PyMOL software version 4.6.0 

(Schrödinger LLC). 

Molecular docking and visualization 

All procedures were performed using the 

software Windows 11 Home Single Language 

64-bit operating system Intel (R)  Core  (TM)  

i3-1005G1 CPU @ 1.20GHz (8 CPUs), ~1.20 

GHz. The grid box for 5IS0 receptor was 18 

Å×18 Å×18 Å, centered at 107.52 94.061 

101.735. The docking protocol validity is 

accepted if the value of root mean square 

deviation (RMSD) less than equal to 2.0 Å. 

Molecular docking simultaneously on 

multiple ligands was performed using the 

Cygwin command to operate AutoDock Vina 

and obtain binding energy prediction value. 

Ligand-protein interactions were visualized 

using Biovia Discovery Studio Visualizer 

v21.1.0.20298 software (Dassault Systèmes, 

San Diego, California, USA). To find out the 

physicochemical properties and toxicity of 

the test ligand as a candidate for drug 

ingredients using SwissADME 

(http://www.swissadme.ch/index.php) and 

pkCSM 

(https://biosig.lab.uq.edu.au/pkcsm/predicti

on) 

Results and discussion 

According to the analysis of predicted binding 

affinity, the binding energy of the top list 7 of 

63 metabolites from Moringa oleifera and 4 of 

27 from Caesalpinia sappan L. were lower 

than capsazepine as a native ligand (Table 1). 

The affinity of ligand bonds with receptors is 

correlated with the binding energy [26]. The 

binding energy value reflects the amount of 

energy the ligand needs to bind to a receptor. 

The stronger the bond between the ligand 

and receptor, the lower the binding energy 

and the more negative value. 

Based on the present study, among the 63 

Moringa oleifera metabolites compounds 

tested, quercetin showed the lowest binding 

energy (-7,80 kcal/mol), followed by ellagic 

acid with a binding energy of -7,50 kcal/mol. 

Apigenin, lutein, luteolin, rhamnetin (-7,40 

kcal/mol), and 3-O-beta-D-Glucopyranosyl 

sitosterol (-7,20 kcal/mol) exhibited lower 

binding affinity than native ligand 

capsazepine. Similarly, among 27 metabolites 

of Caesalpinia sappan L., ombuin showed the 

lowest binding energy (-7,50 kcal/mol), 

followed by phanginin I and protosappanin E-

2 (-7,30 kcal/mol), and phanginin J (-7,20 

kcal/mol). Other compounds not listed in 

Tabel 1 presents a higher binding energy 

prediction than native ligands, indicating a 

weaker binding affinity. 

The receptor-ligand intermolecular 

interactions are displyaed in Figure 1. 
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 TABLE 1 Secondary metabolites docking scores against TRPV1 (5IS0) 

  

Moreover, the results showed that all of 

the top 7 molecular docking results of 

Moringa oleifera metabolites and the top 4 of 

Caesalpinia sappan L. metabolites meet 

Lipinski’s rule of five (RO5), except lutein and 

protosappanin E-2 (Table 2). 

The RO5 term represents a molecular 

weight of less than 500 Da, a log P of less 

than 5, an H-bond donor of less than 5, and 

an H-bond acceptor of less than 10. RO5 is 

used to classify the phytochemicals that are 

effective in being used as oral drugs [27]. It 

means that violation of the RO5 leads to poor 

membrane permeation and absorption. The 

LD50 parameter is used to measure the 

relative toxicity of the compound, while 

hepatotoxicity is associated with compound-

induced liver damage. 

The pkCSM analysis showed that only 

capsazepine as a native ligand was predicted 

to have a hepatotoxicity effect. This result 

means that the potential compounds from 

Moringa oleifera and Caesalpinia sappan L. 

with lower binding energy than the native 

ligand and passed the RO5 were non-

hepatotoxic. 
 

TABLE 2 Physicochemical properties, drugability, and safety prediction of the compounds 
 

Compounds 

Physicochemical Properties Drug-likeness  Toxicity  

MW 

(g/mol) 

RBN HBA HBD mLogP 

 

BA 

Scor

e 

Vio-

latio

n 

RO5 50 LD Hepat

otoxici

ty 

Capsazepine 376,9 5 2 3 2,87 0,55 0 Yes 2,460 Yes 

M. oleifera metabolites 

Quercetin 302.19 0 8 4 0,14 0,55 0 Yes 2,399 No 

Ellagic Acid 270.24 1 5 3 0,52 0,55 0 Yes 2,450 No 

Apigenin 568.87 10 2 2 6,96 0,17 2 No 3,491 No 

Lutein 286.24 1 6 4 0,03 0,55 0 Yes 2,455 No 

Luteolin 316.26 2 7 4 -0,31 0,55 0 Yes 2,453 No 

Rhamnetin 576.85 9 6 4 3,96 0,55 1 Yes 2,376 No 

Source Compound ΔG (kcal/mol) 

Native Ligand Capsazepine -7,1 

Moringa oleifera metabolites Quercetin -7,8 

Ellagic Acid -7,5 

Apigenin -7,4 

Lutein -7,4 

 Luteolin -7,4 

 Rhamnetin -7,4 

 3-O-beta-D-Glucopyranosyl sitosterol -7,2 

Caesalpinia sappan metabolites Ombuin -7,5 

Phanginin I -7,3 

Protosappanin E-2 -7,3 

Phanginin J -7,2 
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3-O-beta-D-
Glucopyranosyl 

sitosterol 302.19 0 8 4 0,14 0,55 0 Yes 2,399 No 

C. sappan L. metabolites 

Ombuin 330,29 3 7 3 -0,07 0,55 0 Yes 2,272 No 

Phanginin I 344,44 3 4 0 2,9 0,55 0 Yes 2,366 No 

Protosappanin E-
2 586,54 1 11 7 0,74 0,17 3 No 2,496 No 

Phanginin J 358,43 4 5 0 1,98 0,55 0 Yes 2,396 No 

FIGURE 1 The ligand interactions toward 5IS0, TRPV1 receptor. Visualization results were obtain using 

Biovia Discovery Studio Visualizer v21.1.0.20298 software 

 

 

Neuropathic pain therapy aims to improve 

the patient's quality of life. Several different 

treatments for neuropathic pain have been 

utilized. Compounds derived from natural 

products are frequently a source of 

inspiration in drug discovery, including 

neuropathic pain. 

Through this study, we screened and 

evaluated several secondary metabolites 

from Moringa oleifera and Caesalpinia sappan 

L. as TRPV1 antagonists. This study evaluates 

the potential of Moringa oleifera and 

Caesalpinia sappan L. secondary metabolites 

in modulating TRPV1 (5IS0). The docking 
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method is used to determine the ability of 

metabolites to bind TRPV1 as the pain 

receptor target to prevent neuropathic 

progression. The structure of the 5IS0 

macromolecule is TRPV1 in complex with 

capsazepine, its native ligand. Capsazepine, 

the first synthetic analog of capsaicin, acts as 

a TRPV1 antagonist [28]. 

The validation of binding was done by 

calculating the RMSD of native ligand and 

ligand conformation. This result showed that 

the docking protocol is acceptable because 

the RMSD value is less than equal to 2 Å. 

Interestingly, there have been previous 

studies regarding the activity of several 

compounds from neuropathic pain in various 

models, although few were specific to TRPV1. 

A study reported that quercetin prevents the 

increase of thermal and mechanical 

nociceptive response caused by oxaliplatin 

and paclitaxel [29,30]. Moreover, quercetin 

inhibited the increased expression of PKC and 

TRPV1 in paclitaxel-treated rats and mice 

spinal cords and DRGs [30]. 

TRPV1 function is altered by PKCε 

activation in DRG neurons, contributing to 

hyperalgesia [31]. 

Quercetin repaired neuropathic pain in a 

chronic constriction injury (CCI) rat model by 

reducing TNF-, IL-6, and IL-1 levels and 

inhibiting p-38 MAPK, p-ERK, and p-JNK [32]. 

Quercetin exerted its analgesic effect by 

inhibiting cytokine-induced inflammatory 

hypernociception (e.g., TNF and CXCL1) and 

decreasing carrageenin-induced IL-1 

production as well as carrageenin-induced 

decrease in reduced glutathione (GSH) levels 

[33]. 

In addition, Quercetin inhibited peripheral 

nociceptive muscle pain by inhibiting 

myeloperoxidase and N-acetyl-β-D- 

glucosaminidase activities, cytokine 

production, oxidative stress, and 

cyclooxygenase-2 expression [34]. 

Ellagic acid also has an antinociceptive 

effect and contributes to improve 

neuropathic pain. Ellagic acid directly 

protected the peripheral nerves in the 

diabetic neuropathic mice model and also 

through the opioidergic system and L-

arginine–NO–cGMP–ATP sensitive K+ 

channels pathway [35-37]. 

TRPV1 is often coexpressed with MOR1, a 

member of the GPCR opioidergic system, in 

the peripheral nervous system such as DRG 

[38]. TRPV1 is a physiological regulator of 

MOR1 by regulating MOR1 function via GRK5 

[39,40]. 

In inflammatory pain conditions, TRPV1 

inhibition is associated with activating the 

cGMP/PKG/ATP-sensitive potassium channel 

signaling pathway [41]. 

Previous studies have shown that the 

therapeutic management of neuropathic pain 

by luteolin acts as an antioxidant, leading to 

increased expression of antioxidant enzymes, 

such as SOD, CAT, glutathione peroxidase, 

and GSH [42]. The same antioxidant effect 

occurs due to using apigenin and lutein with 

their mechanism of preventing damage to 

myelin and axons [43,44]. 

However, no studies are exploring the 

activities of rhamnetin, 3-O-beta-D-

Glucopyranosyl sitosterol, ombuin, phaginin I, 

protosappanin E-2, and phaginin J on 

neuropathic pain. Therefore, the findings in 

this in silico study are potential for further 

studies. 

In vitro and in vivo studies, 

pharmacokinetics, and bioavailability of 

compounds are needed to ensure the potency 

of secondary metabolites of Moringa oleifera 

and Caesalpinia sappan L. 

Conclusion  

In silico molecular docking study from 

Moringa oleifera and Caesalpinia sappan L. 

secondary metabolites were conducted. This 

study concludes that six metabolites of 

Moringa oleifera (quercetin, ellagic acid, 

lutein, luteolin, rhamnetin, and 3-O-beta-D-

Glucopyranosyl sitosterol) and three 

metabolites of Caesalpinia sappan L. (ombuin, 
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phanginin I, and phanginin J) potential to be 

developed as a candidate for inhibit TRPV1, 

based on binding energy, RO5, and ADMET 

results. Furthermore, this study became basic 

data for developing TRPV1 antagonist-

targeted therapy, especially in CIPN 

conditions. 
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