Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Review Article


1 University Autonomous of Juarez City

2 Physics and Mathematics, Institute of Engineering and Technology, Universidad Autónoma de Ciudad Juárez, Juarez, Chihuahua, Mexico



The basic elements in biosensors are the recognition element, reporting element, and measuring device. The typical structure for the biosensing process to occur is the one where the recognition element is first in the process, followed by the reporting element, and finally the measuring device. This simple structure, however, can be arranged in many ways, therefore creating different biosensors e.g., ELISA, lateral flow, or electrochemical. This work is a review from 2009 to 2023 of the literature focusing on describing the biosensor elements and their arrangements as well as describing their functions for several known biosensors. There is also a description of how the different arrangements affect the biosensor performance. The analysis is done independently of the different analytes, biosensor materials, or their fabrication. One objective is to inspire new biosensors by looking at structural changes in contrast with focusing on improving a synthesis, changing a concentration, or changing a material substrate. This work also aims at providing a synthetic framework to contribute to the understanding of a large amount of literature available in this field.

Graphical Abstract

Structural design of biosensor: A review


Main Subjects

[1] Research and Markets (2023). Biosensors Market Size, Share & Trends Analysis Report By Technology (Thermal, Optical), By Application (Medical, Food Toxicity), By End-user (Home Healthcare Diagnostics, POC Testing), And Segment Forecasts, 2023 – 2030, Grand View Research, Research Markets, 2023, 1-110, ID: 4538811. [Publisher]
[2] A. Mohammadinejad, R.K. Oskuee, R. Eivazzadeh-Keihan, M. Rezayi, B. Baradaran, A. Maleki, M. Hashemzaei, A. Mokhtarzadeh, M. de la Guardia, Development of biosensors for detection of alpha-fetoprotein: As a major biomarker for hepatocellular carcinoma, TrAC Trends Analyt. Chem., 2020, 130, 115961. [crossref], [Google Scholar], [Publisher]
[3] S. Chen, Y. Zhu, J. Han, T. Zhang, R. Chou, A. Liu, S. Liu, Y. Yang, K. Hu, L. Zou, Construction of a molecularly imprinted sensor modified with tea branch biochar and its rapid detection of norfloxacin residues in animal-derived foods, Foods, 2023, 12, 544. [crossref], [Google Scholar], [Publisher]
[4] A. Barhoum, S. Hamimed, H. Slimi, A. Othmani, F.M. Abdel-Haleem, M. Bechelany, Modern designs of electrochemical sensor platforms for environmental analyses: Principles, nanofabrication opportunities, and challenges, Trends Environ. Anal. Chem., 2023, 38, e00199. [crossref], [Google Scholar], [Publisher]
[5] R.L. Petersen, Strategies using bio-layer interferometry biosensor technology for vaccine research and development, Biosensors, 2017, 7, 49. [crossref], [Google Scholar], [Publisher]
[6] S.K. Lee, B. Yim, J. Park, N.G. Kim, B.S. Kim, Y. Park, Y.K. Yoon, J. Kim, Method for the rapid detection of SARS-CoV-2-neutralizing antibodies using a nanogel-based surface plasmon resonance biosensor, ACS Appl. Polym. Mater., 2023, 5, 2195-2202.  [crossref], [Google Scholar], [Publisher]
[7] G. Li, X. Zhang, F. Zheng, J. Liu, D. Wu, Emerging nanosensing technologies for the detection of β-agonists, Food Chem., 2020, 332, 127431. [crossref], [Google Scholar], [Publisher]
[8] B. Berg, B. Cortazar, D. Tseng, H. Ozkan, S. Feng, Q. Wei, R.Y.L. Chan, J. Burbano, Q. Farooqui, M. Lewinski, D. Di Carlo, Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays, ACS nano, 2015, 9, 7857–7866. [crossref], [Google Scholar], [Publisher]
[9] A.P. Demchenko, Introduction to fluorescence sensing. Springer Science & Business Media, 2008. [Google Scholar], [Publisher]
[10] B.K. Walther, Y. Lu, J. Zhou, T. Chouhan, H. Wang, P. Golani, M. Xu, Q. Xu, C. Guan, Z. Liu, Machine learning-guided synthesis of advanced inorganic materials, Mater. Today, 2020, 41, 72-80, [crossref], [Google Scholar], [Publisher]
[11] L. Mehrannia, B. Khalilzadeh, R. Rahbarghazi, M. Milani, Saydan G. Kanberoglu, H. Yousefi, N. Erk, Electrochemical Biosensors as a Novel Platform in the Identification of Listeriosis Infection, Biosensors, 2023, 13, 216. [crossref], [Google Scholar], [Publisher]
[12] J. R. Crowther. "The ELISA guidebook." In Series Springer Protocols. Methods in Molecular Biology, New Jersey: Humana Press, 2009, 516. [Publisher]
[13] J. Gibbs, M.  Vessels, M. Rothenberg, Selecting the detection system –
colorimetric, fluorescent, luminescent
methods for ELISA assays
application note, corning, 2017. [Google Scholar], [Publisher]
[14] Z. Li, Y. Liu, X. Chen, Y. Wang, H. Niu, F. Li, H. Gao, H. Yu, Y. Yuan, Y. Yin, D. Li, Affinity-based analysis methods for the detection of aminoglycoside antibiotic residues in animal-derived foods: A review, Foods, 2023, 12, 1587. [crossref], [Google Scholar], [Publisher]
[15] T. Lakshmipriya, S.C.B. Gopinath, U. Hashim, T.H. Tang, Signal enhancement in ELISA: Biotin-streptavidin technology against gold nanoparticles, J. Taibah Univ. Medical Sci., 2016, 11, 432–438. [crossref], [Google Scholar], [Publisher]
[16] A. Zhdanov, J. Keefe, L. Franco-Waite, K. R. Konnaiyan, A. Pyayt, Mobile phone based ELISA (MELISA), Biosens. Bioelectron., 2018, 103, 138–142. [crossref], [Google Scholar], [Publisher]
[17] D. Bueno, R. Muñoz, J.L. Marty, Fluorescence analyzer based on smartphone camera and wireless for detection of Ochratoxin A, Sens. Actuators B Chem., 2016, 232, 462–468. [crossref], [Google Scholar], [Publisher]
[18] L. Meng, A.P.F. Turner, W.C. Mak, Soft and flexible material-based affinity sensors, Biotechnol. Adv., 2020, 39, 107398. [crossref], [Google Scholar], [Publisher]
[19]       C. Moina, G. Ybarra. "Fundamentals and applications of immunosensors." Advances in immunoassay technology, 2012, 66. [Google Scholar], [Publisher]
[20] J. Wu, Z. Fu, F. Yan, H. Ju, Biomedical and clinical applications of immunoassays and immunosensors for tumor markers, TrAC, Trends Anal. Chem., 2007, 26, 679–688. [crossref], [Google Scholar], [Publisher]
[21] A.T. Kal-Koshvandi, Recent advances in optical biosensors for the detection of cancer biomarker α-fetoprotein (AFP), TrAC, Trends Anal. Chem., 2020, 128, 115920. [crossref], [Google Scholar], [Publisher]
[22] M. Freitas, M.M.P.S. Neves, H.P.A. Nouws, C. Delerue-Matos, Quantum dots as nanolabels for breast cancer biomarker HER2-ECD analysis in human serum, Talanta, 2020, 208, 120430. [crossref], [Google Scholar], [Publisher]
[23] M. Larguinho, P.V. Baptista, Gold and silver nanoparticles for clinical diagnostics—from genomics to proteomics, J. proteomics, 2012, 75, 2811–2823. [crossref], [Google Scholar], [Publisher]
[24] H. Li, D. Xu, Silver nanoparticles as labels for applications in bioassays, TrAC, Trends Anal. Chem., 2014, 61, 67–73. [crossref], [Google Scholar], [Publisher]
[25] J. Li, J.J. Zhu, K. Xu, Fluorescent metal nanoclusters: from synthesis to applications, TrAC, Trends Anal. Chem., 2014, 58, 9098. [crossref], [Google Scholar], [Publisher]
[26] J. Tellechea-Luzardo, H. Martín Lázaro, R. Moreno López, P. Carbonell, Sensbio: an online server for biosensor design, BMC bioinform., 2023, 24, 1–15. [crossref], [Google Scholar], [Publisher]
[27] C.G. Siontorou, K.N. Georgopoulos, M.M.E. Nalantzi, Designing biosensor networks for the environmental risk assessment of aquatic systems, Crit. Rev. Environ. Sci. Technol., 2017, 47, 40–63. [crossref], [Google Scholar], [Publisher]
[28] X. Jin, C. Liu, T. Xu, L. Su, X. Zhang, Artificial intelligence biosensors: Challenges and prospects, Biosens. Bioelectron., 2020, 165, 112412. [crossref], [Google Scholar], [Publisher]
[29] X. Jin, A. Cai, T. Xu, X. Zhang, Artificial intelligence biosensors for continuous glucose monitoring, Interdiscip. Mater., 2022, 2, 290–307. [crossref], [Google Scholar], [Publisher]
[30] R. Du, M. Guo, X. He, K. Huang, Y. Luo, Feedback regulation mode of gene circuits directly affects the detection range and sensitivity of lead and mercury microbial biosensors, Analytica Chimica Acta, 2019, 1084, 85–92. [crossref], [Google Scholar], [Publisher]
[31] S. Hu, G. Zhang, X. Jia, Improvement of a highly sensitive and specific whole-cell biosensor by adding a positive feedback amplifier, Synth. Syst. Biotechnol., 2023, 8, 292–299. [crossref], [Google Scholar], [Publisher]
[32] C.I.L. Justino, T.A. Rocha-santos, A.C. Duarte, Review of analytical figures of merit of sensors and biosensors in clinical applications, TrAC, Trends Anal. Chem., 2010, 29, 1172–1183. [crossref], [Google Scholar], [Publisher]
[33] F.A. Batzias, C.G. Siontorou, Creating a specific domain ontology for supporting R&D in the science-based sector–The case of biosensors, Expert Syst. Appl., 2012, 39, 9994-10015. [crossref], [Google Scholar], [Publisher]
[34] Demchenko A.P., Introduction to fluorescence sensing, Springer Science & Business Media, 2008 [crossref], [Google Scholar], [Publisher]
[35] T.J. Free, R.W. Tucker, K.M. Simonson, S.A. Smith, C.M. Lindgren, W.G. Pitt, B.C. Bundy, Engineering at-home dilution and filtration methods to enable paper-based colorimetric biosensing in human blood with cell-free protein synthesis, Biosensors, 2023, 13, 104. [crossref], [Google Scholar], [Publisher]
[36] L. Farzin, M. Shamsipur, L. Samandari, S. Sadjadi, S. Sheibani, Biosensing strategies based on organic-scaffolded metal nanoclusters for ultrasensitive detection of tumor markers, Talanta, 2020, 214, 120886. [crossref], [Google Scholar], [Publisher]
[37] R. Zanella, Metodologías para la síntesis de nanopartículas: controlando forma y tamaño, Mundo nano. Revista interdisciplinaria en nanociencias y nanotecnología, 2012, 5, 69-81.  [Google Scholar], [Publisher]
[38] Y. Wang, X.P. Yan, Fabrication of vascular endothelial growth factor antibody bioconjugated ultrasmall near-infrared fluorescent Ag 2 S quantum dots for targeted cancer imaging in vivo, ChemComm, 2013, 49, 3324–3326. [crossref], [Google Scholar], [Publisher]
[39] H. Kim, W. Seong, E. Rha, H. Lee, S.K. Kim, K.K. Kwon, K.H. Park, D.H. Lee, S.G. Lee, Machine learning linked evolutionary biosensor array for highly sensitive and specific molecular identification, Biosens. Bioelectron., 2020, 170, 112670. [crossref], [Google Scholar], [Publisher]
[40] D. Bizzotto, I.J. Burgess, T. Doneux, T. Sagara, H.Z. Yu, Beyond simple cartoons: challenges in characterizing electrochemical biosensor interfaces, ACS sensors, 2018, 3, 5–12. [crossref], [Google Scholar], [Publisher]
[41] N. Olson, J. Bae, Biosensors—publication trends and knowledge domain visualization, Sensors, 2019, 19, 2615. [crossref], [Google Scholar], [Publisher]
[42] M.R. Bindhu, M. Umadevi Spectrochim, Silver and gold nanoparticles for sensor and antibacterial applications, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 128, 3745. [crossref], [Google Scholar], [Publisher]
[43] D. Zhao, Z. Wu, J.Yu, H. Wang, Y. Li, Y. Duan, Highly sensitive microfluidic detection of carcinoembryonic antigen via a synergetic fluorescence enhancement strategy based on the micro/nanostructure optimization of ZnO nanorod arrays and in situ ZIF-8 coating, Chem. Eng. J., 2020, 383, 123230. [crossref], [Google Scholar], [Publisher]
[44] Y. Liu, P. Dong, Q. Jiang, F. Wang, D.W. Pang, X. Liu, Assembly-enhanced fluorescence from metal nanoclusters and quantum dots for highly sensitive biosensing, Sens. Actuators B Chem., 2019, 279, 334–341. [crossref], [Google Scholar], [Publisher]
[45] Y. Liu, J. Wang, X. Song, K. Xu, H. Chen, C. Zhao, J. Li, Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles, Microchimica Acta, 2018, 185, 360. [crossref], [Google Scholar], [Publisher]
[46] I.M. Khan, S. Zhao, S. Niazi, A. Mohsin, M. Shoaib, N. Duan, S. Wu, Z. Wang, Silver nanoclusters based FRET aptasensor for sensitive and selective fluorescent detection of T-2 toxin, Sens. Actuators B Chem., 2018, 277, 328-335. [crossref], [Google Scholar], [Publisher]
[47] F.M. Moghadam, M. Rahaie, A signal-on nanobiosensor for VEGF165 detection based on supraparticle copper nanoclusters formed on bivalent aptamer, Biosens. Bioelectron., 2019,132,186-195. [crossref], [Google Scholar], [Publisher]
[48] Q. Guo, X. Li, C. Shen, S. Zhang, H. Qi, T. Li, M. Yang, Electrochemical immunoassay for the protein biomarker mucin 1 and for MCF-7 cancer cells based on signal enhancement by silver nanoclusters, Microchimica Acta, 2015, 182, 1483–1489. [crossref], [Google Scholar], [Publisher]
[49] A.A. Sadeghan, H. Soltaninejad, S. Hosseinkhani, M. Hosseini, M.R. Ganjali, M.A. Asadollahi, Fluorescence enhancement of silver nanocluster at intrastrand of a 12C-loop in presence of methylated region of sept 9 promoter, Analytica chimica acta, 2018, 1038, 157-165. [crossref], [Google Scholar], [Publisher]
[50] T. Laksanasopin, T.W. Guo, S. Nayak, A.A. Sridhara, S. Xie, O.O. Olowookere, P. Cadinu, F. Meng, N.H. Chee, J. Kim, C.D. Chin, A smartphone dongle for diagnosis of infectious diseases at the point of care, Sci. Transl. Med., 2015, 7, 273re1-273re1. [crossref], [Google Scholar], [Publisher]
[51] C. Wang, K. Xing, G. Zhang, M. Yuan, S. Xu, D. Liu, W. Chen, J. Peng, S. Hu, W.H. Lai, 2019. Novel ELISA based on fluorescent quenching of DNA-stabilized silver nanoclusters for detecting E. coli O157: H7, Food Chem., 2019, 281, 91-96. [crossref], [Google Scholar], [Publisher]
[52] R. Li, Q. Liu, Y. Jin, B. Li, Fluorescent enzyme-linked immunoassay strategy based on enzyme-triggered in-situ synthesis of fluorescent copper nanoclusters, Sens. Actuators B Chem., 2019, 281, 28–33. [crossref], [Google Scholar], [Publisher]
[53] W.C. Mak, V. Beni, A.P.F. Turner, Lateral-flow technology: From visual to instrumental, TrAC, Trends Anal. Chem., 2016, 79, 297–305. [crossref], [Google Scholar], [Publisher]
[54] A. Sena-Torralba, R. Álvarez-Diduk, C. Parolo, A. Piper, A. Merkoçi, Toward next generation lateral flow assays: Integration of nanomaterials, Chem. Rev., 2022, 122, 14881–14910. [crossref], [Google Scholar], [Publisher]
[55] A. Moyano, E. Serrano-Pertierra, M. Salvador, J.C. Martínez-García, M. Rivas, M.C. Blanco-López, Magnetic lateral flow immunoassays, Diagnostics, 2020, 10, 228. [crossref], [Google Scholar], [Publisher]
[56] Q. Ye, S. Ren, H. Huang, G. Duan, K. Liu, J.B. Liu, Fluorescent and colorimetric sensors based on the oxidation of o-phenylenediamine, ACS omega, 2020, 5, 20698–20706. [crossref], [Google Scholar], [Publisher]
[57] Z. Lin, S. Lv, K. Zhang, D. Tang, Optical transformation of a CdTe quantum dot-based paper sensor for a visual fluorescence immunoassay induced by dissolved silver ions, J. Mater. Chem. B, 2017, 5, 826–833. [crossref], [Google Scholar], [Publisher]
[58] J. Wang, X. Wang, S. Wu, J. Song, Y. Zhao, Y. Ge, C. Meng, Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay, Analytica Chimica Acta, 2016, 906, 80–88. [crossref], [Google Scholar], [Publisher]
[59] A.M. CG, A. Varghese, Recent advances in nanomaterials based molecularly imprinted electrochemical sensors, Crit. Rev. Anal. Chem., 2023, 53, 88–97. [crossref], [Google Scholar], [Publisher]
[60] D.M. Rissin, C.W. Kan, T.G. Campbell, S.C. Howes, D.R. Fournier, L. Song, T. Piech, P.P. Patel, L. Chang, A.J. Rivnak, E.P. Ferrell, Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations, Nat. Biotechnol., 2010, 28, 595–599. [crossref], [Google Scholar], [Publisher].
[61] L. Tarassishin, The evolution of the enzyme immunoassay/enzyme-linked immunosorbent assay, Journal of Proteomics and Genomics Research, 2021, 2, 13-17. [crossref], [Google Scholar], [Publisher]
[62] J. Park, M. Park, J. Kim, Y. Heo, B.H. Han, N. Choi, C. Park, R. Lee, D.G. Lee, S.J.Y. Chung, Kang, Beads-and oil-free single molecule assay with immuno-rolling circle amplification for detection of SARS-CoV-2 from saliva, Biosens. Bioelectron., 2023, 232, 115316. [crossref], [Google Scholar], [Publisher]
[63] M. Pohanka, Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications, Materials, 2018, 11, 448. [crossref], [Google Scholar], [Publisher]
[64] A.K. Singh, M. Singh, QCM sensing of melphalan via electropolymerized molecularly imprinted polythiophene films, Biosens. Bioelectron., 2015, 74, 711–717. [crossref], [Google Scholar], [Publisher]
[65] P. Singh, SPR biosensors: historical perspectives and current challenges, Sens. Actuators B Chem., 2016, 229, 110–130. [crossref], [Google Scholar], [Publisher]
[66] J. Li, J. Macdonald, Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses, Biosens. Bioelectron., 2016, 85, 998–999. [crossref], [Google Scholar], [Publisher]
[67] R. Feiner, T. Dvir, Soft and fibrous multiplexed biosensors, Nat. Biomed. Eng, 2020, 4, 135–136. [crossref], [Google Scholar], [Publisher]
[68] L. Beaudet, R. Rodriguez-Suarez, M.H. Venne, M. Caron, J. Bédard, V. Brechler, S. Parent, M. Bielefeld-Sévigny, AlphaLISA immunoassays: the no-wash alternative to ELISAs for research and drug discovery, Nat. Methods, 2008, 5, an8–an9. [crossref], [Google Scholar], [Publisher]
[69] S.D. Staerz, E.M. Lisabeth, E. Njomen, T.S. Dexheimer, R.R. Neubig, J.J. Tepe, Development of a cell-based alphaLISA assay for high-throughput screening for small molecule proteasome modulators, ACS omega, 2023, 8, 15650-15659. [crossref], [Google Scholar], [Publisher]
[70] H. Wang, L.O. Jones, T. Zhao, I. Hwang, V.M. Lynch, N.M. Khashab, G.C. Schatz, Z.A. Page, J.L. Sessler, Fluorescent copolymer aggregate sensor for lithium chloride, Chem. Sci., 2023, 14, 4120–4125. [crossref], [Google Scholar], [Publisher]
[71] A. Futane, V. Narayanamurthy, P. Jadhav, A. Srinivasan, Aptamer-based rapid diagnosis for point-of-care application, Microfluid. Nanofluidics, 2023, 27, 15, [crossref], [Google Scholar], [Publisher]
[72] J. Chen, Z. Fang, J. Liu, L. Zeng, A simple and rapid biosensor for ochratoxin A based on a structure-switching signaling aptamer, Food Control, 2012, 25, 555–560. [crossref], [Google Scholar], [Publisher]
[73] K. Mosbach, Thermal biosensors, Biosens. Bioelectron., 1991, 6, 179–182. [crossref], [Google Scholar], [Publisher]
[74] E. Greenwald, J. Zhang, FBDB - Fluorescent Biosensor Database, University of California San Diego. (accessed Apr. 29, 2021).
[75] H.S. Mondal, K.A. Ahmed, N. Birbilis, M.Z. Hossain, Machine learning for detecting DNA attachment on SPR biosensor. Scientific Reports, 2023, 13, 1–10. [crossref], [Google Scholar], [Publisher]