Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article


Department of Orthopedic and Traumatology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia



Rotator cuff tear is the major cause of morbidity which affects over 40% of patients aged 60 years and older. Surgical repair is often unsuccessful and has high complications. Tissue engineering therapies, such as applying Mesenchymal stem cells (MSCs) secretomes, have shown beneficial effects on tendon repair. This study aims to assess the effect of secretome application on rotator cuff tendon tears by examining changes in transforming growth factor beta (TGF-β), Scleraxis, and Collagen type III levels. A total of 20 post-injured supraspinatus tendon New Zealand white rabbits were divided into 2 groups: injected with of frozen-dried tenogenic secretome (treatment group) and no treatment (control group). Histologic evaluation on the repaired site was conducted on the second and the fourth weeks; analysing immunohistochemistry (IHC), TGF-β, Scleraxis, collagen type III levels, modified tendon maturing score, blood vessel, fibroblast, and fibrotic tissue. Immunoreactive Score (IRS) result for TGF-β, Scleraxis, and collagen type III on treatment group were moderate. Meanwhile, IRS result for control group was a mix of mild and moderate. Compared to the control group, a significant difference was found (p<0.05). Histologically, Modified Tendon Maturing Score, amount of blood vessel, and fibroblast were found to be significantly higher (p<0,05) in treatment group. Meanwhile, fibrotic tissues were significantly lower (p<0,05). Secretomes promote the healing of specific tissues such as tendons in vitro and in vivo. TGF-β is crucial for collagen synthesis, while scleraxis facilitates tendon-bone attachment. Collagen type III initiates tendon repair, requiring increased blood vessel and fibroblast growth and lower fibrotic tissue.

Graphical Abstract

The effect of secretome injection on tendon healing of rotator cuff tear on new zealand white rabbit through the expression of tgf-, scleraxis, collagen type iii, and histological evaluation


Main Subjects

[1] F. Familiari, O. Galasso, F. Massazza, M. Mercurio, H. Fox, U. Srikumaran, G. Gasparini, Artificial intelligence in the management of rotator cuff tears, International Journal of Environmental Research and Public Health, 2022,  19, 16779.  [Crossref], [Google Scholar], [Publisher]
[2] C. Loiacono, S. Palermi, B. Massa, I. Belviso, V. Romano, A. Di Gregorio, F. Sirico, A.M. Sacco, Tendinopathy: pathophysiology, therapeutic options, and role of nutraceutics. A narrative literature review, Medicina, 2019, 55, 447. [Crossref], [Google Scholar], [Publisher]
[3] S.W. Chung, J.Y. Kim, M.H. Kim, S.H. Kim, J.H. Oh, Arthroscopic repair of massive rotator cuff tears: outcome and analysis of factors associated with healing failure or poor postoperative function, The American Journal of Sports Medicine2013, 41, 1674-1683. [Crossref], [Google Scholar], [Publisher]
[4] S. Wong, A. Ning, C. Lee, B.T. Feeley, Return to sport after muscle injury, Current Reviews in Musculoskeletal Medicine, 2015,  8, 168-175. [Crossref], [Google Scholar], [Publisher]
[5] J. Phelps, A. Sanati-Nezhad, M. Ungrin, N.A. Duncan, A. Sen, Bioprocessing of mesenchymal stem cells and their derivatives: toward cell-free therapeutics, Stem Cells International, 2018,  2018. [Crossref], [Google Scholar], [Publisher]
[6] J.R. Ferreira, G.Q. Teixeira, S.G. Santos, M.A. Barbosa, G. Almeida-Porada, R.M. Gonçalves, Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning, Frontiers in Immunology2018, 9, 2837. [Crossref], [Google Scholar], [Publisher]
[7] T. Molloy, Y. Wang, G.A. Murrell, The roles of growth factors in tendon and ligament healing, Sports Medicine2003, 33, 381-394. [Crossref], [Google Scholar], [Publisher]
[8] H. Yurie, R. Ikeguchi, T. Aoyama, M. Tanaka, H. Oda, H. Takeuchi, S. Mitsuzawa, M. Ando, K. Yoshimoto, T. Noguchi, S. Akieda, Bio 3D conduits derived from bone marrow stromal cells promote peripheral nerve regeneration, Cell Transplantation, 2020,  29, 963689720951551. [Crossref], [Google Scholar], [Publisher]
[9] J. Zhang, B. Li, J.H. Wang, The role of engineered tendon matrix in the stemness of tendon stem cells in vitro and the promotion of tendon-like tissue formation in vivo, Biomaterials, 2011,  32, 6972-6981. [Crossref], [Google Scholar], [Publisher]
[10] Z. Yin, X. Chen, J.L. Chen, W.L. Shen, T.M.H. Nguyen, L. Gao, H.W. Ouyang, The regulation of tendon stem cell differentiation by the alignment of nanofibers, Biomaterials2010, 31, 2163-2175. [Crossref], [Google Scholar], [Publisher]
[11] J. Zhang, J.H. Wang, Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC musculoskeletal disorders, 2010, 11, 1-11. [Crossref], [Google Scholar], [Publisher]
[12] S. Eleuteri, A. Fierabracci, Insights into the secretome of mesenchymal stem cells and its potential applications, International Journal of Molecular Sciences, 2019,  20, 4597. [Crossref], [Google Scholar], [Publisher]
[13] M. Ni, Y.F. Rui, Q. Tan, Y. Liu, L.L. Xu, K.M. Chan, Y. Wang, G. Li, Engineered scaffold-free tendon tissue produced by tendon-derived stem cells, Biomaterials2013, 34, 2024-2037. [Crossref], [Google Scholar], [Publisher]
[14] J. Zhang, J.H.C. Wang, Human tendon stem cells better maintain their stemness in hypoxic culture conditions, PloS one, 2013,  8, 61424. [Crossref], [Google Scholar], [Publisher]
[15] M. Ngo, H. Pham, M.T. Longaker, J. Chang, Differential expression of transforming growth factor-β receptors in a rabbit zone II flexor tendon wound healing model, Plastic and Reconstructive Surgery, 2001,  108, 1260-1267. [Crossref], [Google Scholar], [Publisher]
[16] J. Chang, D. Most, E. Stelnicki, J.W. Siebert, M.T. Longaker, K. Hui, W.C. Lineaweaver, Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: evidence for dual mechanisms of repair, Plastic and Reconstructive Surgery1997, 100, 937-944. [Crossref], [Google Scholar], [Publisher]
[17] P. Bornstein, H. Sage, Regulation of collagen gene expression, Progress in Nucleic Acid Research and Molecular Biology, 1989, 37, 67-106. [Crossref], [Google Scholar], [Publisher]
[18] T.W. Lin, L. Cardenas, L.J. Soslowsky, Biomechanics of tendon injury and repair, Journal of Biomechanics, 2004, 37, 865-877. [Crossref], [Google Scholar], [Publisher]
[19] R. Schweitzer, J.H. Chyung, L.C. Murtaugh, A.E. Brent, V. Rosen, E.N. Olson, A. Lassar, C.J. Tabin, Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments, 2001. [Crossref], [Google Scholar], [Publisher]
[20] E. Blitz, A. Sharir, H. Akiyama, E. Zelzer, formed modularly by a distinct pool of Scx-and Sox9-positive progenitors, Development2013, 140,  2680-2690. [Crossref], [Google Scholar], [Publisher]
[21] K. Ideo, T. Tokunaga, C. Shukunami, A. Takimoto, Y. Yoshimoto, R. Yonemitsu, T. Karasugi, H. Mizuta, Y. Hiraki, T. Miyamoto, Role of Scx+/Sox9+ cells as potential progenitor cells for postnatal supraspinatus enthesis formation and healing after injury in mice, PLoS One2020, 15, 242286. [Crossref], [Google Scholar], [Publisher]
[22] Y. Sugimoto, A. Takimoto, H. Akiyama, R. Kist, G. Scherer, T. Nakamura, Y. Hiraki, C. Shukunami, Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament, Development2013, 140, 2280-2288. [Crossref], [Google Scholar], [Publisher]
[23] S. Agarwal, S.J. Loder, D. Cholok, J. Peterson, J.  Li, C.  Breuler, R. Cameron Brownley, H. Hsin Sung, M.T. Chung, N. Kamiya, S. Li, Scleraxis-lineage cells contribute to ectopic bone formation in muscle and tendon, Stem Cells, 2017,  35, 705-710. [Crossref], [Google Scholar], [Publisher]
[24] V. Leéjard, G. Brideau, F. Blais, R. Salingcarnboriboon, G. Wagner, M.H. Roehrl, M. Noda, D. Duprez, P. Houillier, J. Rossert, Scleraxis and NFATc regulate the expression of the pro-α1 (I) collagen gene in tendon fibroblasts, Journal of Biological Chemistry2007, 282, 17665-17675. [Crossref], [Google Scholar], [Publisher]
 [25] W. Feng,  Q. Jin,  Y. Ming-Yu,  H. Yang, T. Xu, S. You-Xing,  B. Xu-Ting,  C. Wan, W. Yun-Jiao, W. Huan, Y. Ai-Ning,  MiR-6924-5p-rich exosomes derived from genetically modified Scleraxis-overexpressing PDGFRα (+) BMMSCs as novel nanotherapeutics for treating osteolysis during tendon-bone healing and improving healing strength, Biomaterials, 2021,  279, 121242. [Crossref], [Google Scholar], [Publisher]
[26] A.I. Goncalves, M.T. Rodrigues, S.J. Lee, A. Atala, J.J. Yoo, R.L. Reis, M.E. Gomes, Understanding the role of growth factors in modulating stem cell tenogenesis, PloS one2013, 8, 83734. [Crossref], [Google Scholar], [Publisher]
[27] D.W. Koch, L.V. Schnabel, I.M. Ellis, R.E. Bates, A.K. Berglund, TGF-β2 enhances expression of equine bone marrow-derived mesenchymal stem cell paracrine factors with known associations to tendon healing, Stem Cell Research & Therapy, 202213, 477. [Crossref], [Google Scholar], [Publisher]
[28] N. Sato, T. Taniguchi, Y. Goda, H. Kosaka, K. Higashino, T. Sakai, S. Katoh, N. Yasui, K. Sairyo, H. Taniguchi, Proteomic analysis of human tendon and ligament: solubilization and analysis of insoluble extracellular matrix in connective tissues, Journal of Proteome Research, 2016,  15, 4709-4721. [Crossref], [Google Scholar], [Publisher]