ECC

Eurasian Chemical Communications

Short Communication

http://echemcom.com

Cobalt oxide nanoparticles by solid-state thermal decomposition: Synthesis and characterization

Aliakbar Dehno Khalaji

Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran

Received:2 April 2016, Accepted:4 March 2018, Published:1 January 2019

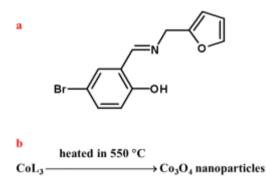
Abstract

In this study, mononuclear octahedral cobalt(III) Schiff base complex [CoL₃], L =(5bromo-2-hydroxybenzyl-2-furylmethyl)imine was synthesized from the reaction of Co(NO₃)₂·6H₂O and the Schiff base ligand L in methanol as solvent and characterized by elemental analyes (CHN) and FT-IR spectroscopy. It was used as a new precursor to prepare spinel type cobalt oxide nanoparticles by a facile solid-state thermal decomposition. Controlling the temperature and time, Co₃O₄ nanoparticles were obtained in air at 550°C within 3.5 h. The Co₃O₄ nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results confirm that the resulting cobalt oxide were prepared during pure single-phases. Using the present method, Co₃O₄ nanoparticles can be produced without using expensive organic solvent and complicated equipment. TEM result showed that the products are almost flat with the size of about 10-50 nm. It has potential to be applied as a general method for preparation of other transition metal oxide nanoparticles.

Keywords: Nanoparticles; Schiff base complex; cobalt oxide; thermal decomposition.

Introduction

The development of transition metal oxide nanoparticles has received considerable interest because of their interesting size-dependent physical and chemical properties and broad application in several important technologies [1,2]. Among these oxides, spinel types, such as Co₃O₄ and Mn₃O₄, have been the subject of scientific and technologie attention owing to their wide range of applications [3,4]. Cobalt oxide is formed in five different oxidation states [5] among which Co₃O₄ and CoO are the most stable and magnetic of them and have been studied by Zhu and co-


workers [6]. Until now. different nanostructures of Co₃O₄, including nanotube, nanoplates, nanowalls, nanospheres and etc have been prepared by different methods [7-10]. In order to prepare Co₃O₄, various physical and chemical methods such as sol-gel [1], ultrasound-assisted combustion [2], [11], co-precipitation [12], ball milling [13], and thermal decomposition [5] have been extensively studied. However, most of these methods are toxic and/or expensive. Among various techniques for synthesis of transition metal oxide nanoparticles [2,14-13], thermal decomposition is one of the best method [14-16], because of its

Eurasian Chem. Commun., 2019, 113-116

cheapness and non-toxiciy. In addition, the process conditions, particle size, particle crystal structure, and purity could be controlled.

Recently Co₃O₄ nanoparticles were synthesized using thermal decomposition of Co(III) complexes by Farhadi and his co-workers [15,16]. reported They that octahedral cobalt(III) complex was first formed then it was calcined at various temperatures in an electric furnace for 1 h to get cobalt oxide nanoparticles with size about 10-15 nm. Salavati-Niasari and his co-worker synthesized Co₃O₄ nanoparticles by solid state thermal decomposition of tetrahedral cobalt(II) complex $[Co(sal)_2]$ at 500 °C in an electric furnace for 5 h to get cobalt oxide nanoparticles with size about 20-30 nm [14].

In this paper, we decided to prepare Co_3O_4 nanoparticles from cobalt(III) Schiff base complex [CoL₃] [17] (Scheme 1). The product was identified by powder X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM).

Scheme 1. a) Chemical structure of Schiff base ligand (5-bromo-2-hydroxybenzyl-2furylmethyl)imine, b) preparation of Co₃O₄ nanoparticles

Experimental

Materials and physical measurements All reagents and solvents for synthesis analysis were commercially and available and used as received without further purifications. X-ray powder diffraction (XRD) pattern of the nanoparticles wererecorded on a Bruker AXS diffractometer D8 ADVANCE with Cu-Ka radiation with nickel beta filter in the range $2\theta = 4^{\circ}-90^{\circ}$. Scanning electron microscopy (SEM) images were obtained on Philips XL-30ESEM. Transmission electron microscopy (TEM) images were obtained on Zeiss a EM10C transmission electron microscope with an accelerating voltage of 80 kV.

The cobalt complex was prepared according to the procedure described previously [17]. CoCl₂·6H₂O (1 mmol) was dissolved in 20 mL methanol and stirred for 10 min. About 10 mL methanolic solution of the Schiff base (5-bromo-2-hydroxybenzyl-2furylmethyl)imine (3 mmol), was added to it dropwise.the mixture was allowed to stir for 2 h at 50 °C. The precipitates

of the complex were filtration. Anal calc. for $C_{33}H_{27}N_3CoBr_3O_6$: C, 46.07; H, 3.14; N, 4.88%. Found: C, 46.15; H, 3.19; N, 4.93%. FT-IR (cm⁻¹): 1612 cm (C=N).

Synthesis of Co₃O₄ nanoparticles

Synthesis of cobalt complex

The precursor complex (0.5 g) was loaded in to a platinum crucible and then was placed in oven and heated at 550 °C with a rate of 10°C/min in air. Nanoparticles of cobalt oxide were synthesized after 3.5 h (about 0.07 g). The final products were washed with ethanol for at least three times to remove impurities, if any, and dried at r.t. The synthesized Co₃O₄ nanoparticles were characterized by XRD, SEM and TEM techniques.

Results and discussion

Figure 1 shows the XRD pattern ($10 < 2\theta < 80$) of the Co₃O₄ nanoparticles. The diffraction peaks at $2\theta = 19$ (111), 31 (220), 37 (311), 39 (222), 45 (400), 56 (422), 59 (511) and 66 (440), can be indexed to pure Co_3O_4 cubic phase [14,15]. The crystallite size (D_c) is calculated using the Debye-Scherre formula (Eq. 1) from the major diffraction peak of the Co_3O_4 nanoparticles.

 $D_c = 0.89 \lambda / \beta \cos\theta$ (1) Where λ is the X-ray wavelength used in XRD (here, 1.5418 Å), β is the pure diffraction broadening of a peak at halfheight and θ is the Bragg angle. Thus, the average diameter of the Co₃O₄ nanoparticles is found as 10-50 nm.

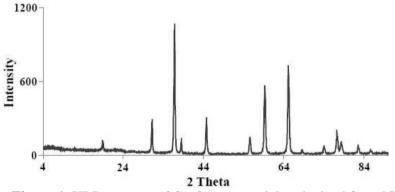


Figure 1. XRD patterns of Co₃O₄ nanoparticles obtained from [CoL₃]

The morphology and microstructure of the Co_3O_4 nanoparticles are investigated by SEM and TEM (Figures 2 and 3). Studies show the particle size of

 Co_3O_4 nanoparticles is about 10-50 nm. These results indicate that the Co_3O_4 crystals are formed by partially aggregation of smaller crystallites during the synthesis process.

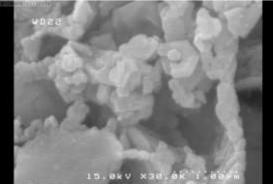


Figure 2. SEM image of Co₃O₄ nanoparticles



Figure 3. TEM image of Co₃O₄ nanoparticles

Conclusion

Pure Co_3O_4 nanoparticles have been successfully prepared by heating of octahedral cobalt(III) Schiff base complex [CoL₃] at 550°C. To the best of our knowledge, the synthesis of Co_3O_4 nanoparticles from Co(III) Schiff base complexes has been rarely reported. The method is simple, inexpensive, non-toxic and could be easily extended to other transition metals.

Acknowledgements

We acknowledge the Golestan University (GU) for partial support of this work.

References

[1] R. Xu, J. Wang, Q. Li Q, G. Sun, E. Wang, S. Li, J. Gu, M. Ju, *J. Solid State Chem.*, **2009**, *182*, 3177-3182.

[2] I. Luisetto, F. Pepe, E. Bemporad, J. Nanopart. Res., **2008**, 10, 59-67.

[3] Y.G. Li, B. Tan, Y.Y. Wu, J. Am. Chem. Soc., **2006**, 128, 14258-14259.

[4] F. Davar, M. Salavati-Niasari, N. Mir, K. Saberyan, M. Monemzadeh, E. Ahmadi, *Polyhedron.*,**2010**, *29*, 1747-1753.

[5] R.K. Gupta, A.K. Sinha, B.N. Raja Sekhar, A.K. Srivastava, G. Singh, S.K. Deb, *Appl. Phys.* A., **2011**, *103*, 13-19.
[6] HY. Zhu, J. Luo, J.K. Liang, G.H. Rao, J.B. Li, J.Y. Zhang, Z.M. Du, *Physica B.*, **2008**, *403*, 3141-3145. [7] Y.K. Liu, G.H. Wang, C.K. Xu, W.Z. Wang, *Chem. Commun.*, **2002**, 1486-1487.

[8] L.H. Hu, Q. Peng, Y.D. Li, J. Am. Chem. Soc., **2008**, 130, 16136-16137.

[9] F.F. Tao, C.L. Gao, Z.H. Wen, Q. Wang, J.H. Li, Z. Xu, *J. Solid State Chem.*, **2009**, *182*, 1055-1060.

[10] T. Yu, Y.W. Zhu, X.J. Xu, Z.X. Shen, P. Chen, C.T. Lim, J.T.L. Thong, C.H. Sow, *Adv. Mater.*, **2005**, *17*, 1595-1599.

[11] S.W. Oh, H.J. Bang, Y.C. Bae, Y.K. Sun, *J. Power Source.*, **2007**, *173*, 502-509.

[12] T. Lai, Y. Lai, C. Lee, Y. Shu, C. Wang, *Catal. Today.*,**2008**, *131*, 105-110.

[13] J. Ahmed, T. Ahmed, K.V. Ramanujachary, S.B. Lofland, A.K. Ganguli, *J. Colloid Interface Sci.*, **2008**, *321*, 434-441.

[14] A. Khansari, M. Salavati-Niasari, A. Kazemi Babaheydari, *J. Clust. Sci.*, **2012**, *23*, 557-565.

[15] S. Farhadi, J. Safabakhsh, J. Alloys Compd., **2012**, 515, 180-185.

[16] S. Farhadi, K. Pourzare, *Met. Res. Bull.*, **2012**, *47*, 1550-1556.

[17] A.D. Khalaji, S. Maghsodlou Rad,
G. Grivani, M. Rezaei, K. Gotoh, H. Ishida, *Chin. J. Chem.*, **2011**, *29*, 1613-1616.

How to cite this manuscript: Aliakbar Dehno Khalaji. "Cobalt oxide nanoparticles by solid-state thermal decomposition: Synthesis and characterization". *Eurasian Chemical Communications*, 2019, 113-116.