Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Author

Department of New Materials, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, PO Box 76315-117, Kerman, Iran

10.33945/SAMI/ECC.2019.3.2

Abstract

Quinazolinone derivatives are nowadays well recognized as valuable scaffold in drug discovery. In this manuscript an improved multicomponent process for the chemical synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives is described. Isatoic anhydride and aromatic aldehydes with ammonium acetate have been subjected to a three-component reaction under solvent-free conditions and catalysis of SnCl2 dihydrate at 110 °C. All of the products are known and were characterized using melting point, 1HNMR and infrared spectra (FT-IR), and were compared with trusty references. The present methodology offers several advantages, such as cost efficiency, easy experimental workup procedure, mild reaction conditions, short reaction time, good to high yields and synthesis of wide range of products. 
Keywords: Isatoic anhydride; 2,3-dihydroquinazolin-4(1H)-one; SnCl2.2H2O; Solvent-free conditions.

Graphical Abstract

Multicomponent reaction for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones using isatoic anhydride, aldehydes and NH4OAc under Solvent-free conditions

Keywords

[1] R.C. Cioc, E. Ruijter, R.V.A. Orru, Green Chem., 2014, 16, 2958-2975.
 
[2] S. Taghavi-Fardood, A. Ramazani, P. Azimzadeh-Asiabi, Y. Bigdeli-Fard, B. Ebadzadeh, Asian J. Green Chem., 2017, 1, 34-40.
 
[3] L. Youseftabar-Miri, H. Hosseinjani-Pirdehi, Asian J. Green Chem., 2017, 1, 56-68.
 
[4] M. Mohammadi-Zeydi, N. Mahmoodi, G. Ardeshiri-Terogeni, Asian J. Green Chem., 2017, 1, 78-88.
 
[5] R. Motamedi, G. Rezanejade-Bardajee, S. Makenali-Rad, Asian J. Green Chem., 2017, 1, 89-97.
 
[6] S.H. Banitaba, Iran. Chem. Commun., 2018, 6, 389-401.
 
[7] M. Mohammadi Zeydi; M. Fouladi; M. Shamsi-Sani; N. Mahmoodi, Iran. Chem. Commun., 2018, 6, 402-407.
 
[8] G. Chehardoli; N. Mansouri, Iran. Chem. Commun., 2018, 6, 450-460.
 
[9] A. Farhadi; M. Ramyar; M. A. Takassi Iran. Chem. Commun., 2018, 6, 266-270.
 
[10] Z. Vafajoo; D. Kordestani; S. Vafajoo Iran. Chem. Commun., 2018, 6, 293-299.
 
[11] Y.S. Abbas, K.A.M. El-Bayouki, W.M. Basyouni, Synth. Commun., 2016, 46, 993-1035.
 
[12] R. Conti, F.O. Chagas, A.M. Caraballo-Rodriguez, W.G.P. Melo, A.M. Nascimento, B.C. Cavalcanti, M.O. Moraes, C.Pessoa, L.V. Costa-Lotufo, R. Krogh, A.D. Andricopulo, N.P. Lopes, M.T. Pupo, Chem. Biodiversity., 2016, 13, 727-736.
 
[13] R.P. Maskey, M. Shaaban, I. Grun-Wollny, H. Laatsch, J. Nat. Prod., 2004, 67, 1131-1134.
 
[14] S.B. Mhaske, N.P. Argade, Tetrahedron., 2006, 62, 9787-9826.
 
[15] J. D. Wansi, E.N. Happi, J.L.D. Bavoua, K.P. Devkota, N. Sewald, Planta Med., 2012, 78, 71-75.
 
[16] M. Sharma, S. Pandey, K. Chauhan, D. Sharma, B. Kumar, P. M. Chauhan, J. Org. Chem, 2012, 77, 929-937.
 
[17] H.B. Mehta, B.C. Dixit, R.B. Dixit, Chin. Chem. Lett., 2014, 25, 741-744.
 
[18] D.W. Carney, C.D.S. Nelson, B.D.Ferris, J.P. Stevens, A. Lipovsky, T. Kazakov, D. DiMaio, W.J. Atwood, J. K. Sello, Bioorg. Med. Chem., 2014, 22, 4836-4847.
 
[19] T.K. Khatab, K.A.M. El-Bayouki, W.M. Basyouni, F.A. El-Basyoni, S.Y. Abbas, E.A. Mostafa, Res. Pharm. Bio. Chem. Sci., 2015, 6, 281-291.
 
[20] M.J. Hour, L.J. Huang, S.C. Kuo, Y. Xia, K. Bastow, Y. Nakanishi, E. Hamel, K.H. Lee, J. Med. Chem., 2000, 43, 4479-4487.
 
 
[22] (a) C.L. Yoo, J.C. Fettinger, M. Kurth, J. Org. Chem., 2005, 70, 6941-6943. (b) W.K. Su, B. B. Yang, Aust. J. Chem., 2002,55, 695-697. (c) W.K. Su, B.B. Yang, J. Chem. Res., 2002, 604-605.
 
[23] K.H. Narasimhamurthy, S. Chandrappa, K.S. Kumar, K.B. Harsha, H. Ananda, K.S. Rangappa, RSC Adv., 2014, 4, 34479-34486.
 
[24] (a) P.N. Borase, P.B. Thale, G.S. Shankarling, RSC Adv., 2016, 6, 63078-63083. (b) H.R. Safaei, M. Shekouhy, S. Ghorbanzadeh, Chemistry Select., 2018, 3, 4750-4759. (c) X. Wu, S. Oschatz, A. Block, A. Spannenberg; P. Langer, Org. Biomol. Chem., 2014, 12, 1865-1870.
 
[25] P. Kundu, A. Mondal, C. Chowdhury, J. Org. Chem., 2016, 81, 6596-6608.
 
[26] J.M. Khurana, G. Kukreja, J. Heterocycl. Chem., 2003, 40, 677-679.
 
[27] (a) N. Rezaei, E. Sheikhi, P.Rashidi-ranjbar, Synlett., 2018, 29, 912-917. (b) S.B. Azimi, J. Azizian, Tetrahedron Lett., 2016, 57, 181-184.
 
[28] S.B. Azimi, J. Azizian, Synlett., 2016, 27, 1836-1839.
 
[29] V. Sriramoju, S. Kurva, S. Madabhush, New J. Chem. 2018, 42, 3188-3191.
 
[30] K. Ramesh, K. Karnakar, G. Satish, B.S.P. Kumar, Y.V.D. Nageswar, Tetrahedron Lett., 2012, 53, 6936–6939.
 
[31] D. Maitraie, G. Venkat-Reddy, V.N.S. Rama-Rao, S. Ravi-Kanth, P. Shanthan-Rao, B. Narsaiah, J. Fluorine Chem., 2002, 118, 73–79.
 
[32] A. Davoodnia, M. Khashi, N. Tavakoli-Hoseini, Chin. J. Catal., 2014, 35, 1054–1058.
 
[33] M. Ghashang, Orient. J. Chem., 2012, 28, 1213–1218.
 
[34] A. Shokrolahi, A. Zali, M.A. Zare, K. Esmaeilpour, Iran. J. Catal., 2012, 2, 91–94.
 
[35] P. Salehi, M. Dabiri, M. A. Zolfigol, M. Baghbanzedeh, Synlett, 2005, 7, 1155–1157.
 
[36] M.Z. Kassaee, S. Rostamizadeh, N. Shadjou, E. Motamedi, M. Esmaeelzadeh, J. Heterocycl. Chem., 2010, 47, 1421–1424.
 
[37] H.R. Shaternan, F. Rigi, Res. Chem. Intermed., 2015, 41, 721–738.
 
[38] J. Safari, S. Gandomi-Ravandi, J. Mol. Catal. A: Chem., 2014, 390, 1–6
 
[39] N. Azizi, F. Shirdel, Res Chem Intermed., 2017, 43, 3873-3882.
 
[40] M. Dabiri, P. Salehi, M. Baghbanzadeh, M.A. Zolfigol, M. Agheb, S. Heydari, Catalysis Communications., 2008, 9, 785-788.
 
[41] A. Gharib, L. Vojdanifard, N. Noroozi-Pesyan, B.R. Hashemi Pour Khorasani, M. Jahangir, M. Roshani, Bulg. Chem. Commun., 2014, 46, 667-679.
 
[42] M.T. Maghsoodlou, N. Khorshidi, M.R. Mousavi, N. Hazeri, S.M. Habibi-Khorassani, Res. Chem. Intermed., 2015, 41, 7497-7508.
 
[43] I. Yavari, S. Beheshti, J. Iran. Chem. Soc., 2011, 8, 1030-1035.
 
[44] A. Rostami, A. Tavakoli, Chin. Chem. Lett., 2011, 22, 1317-1320.
 
[45] S. Khaksar, S.M. Talesh, C. R. Chimie., 2012, 15, 779-783.