ECC

Eurasian Chemical Communications

Original Research Article

http://echemcom.com

The use of topological indices to predict thermodynamic properties of amino acid derivatives

Afsaneh Safari, Fatemeh Shafiei*

Department of Chemistry, Arak Branch, Islamic Azad University, P.O. BOX 38135-567, Arak, Iran

Received: 11 October 2018, Accepted: 24 October 2018, Published: 1 July 2019

Abstract

In the present investigation the applicability of various topological indices are tested for the QSPR study on 80 amino acid derivatives. Relationship between the Randic' (¹X), Balaban (J), Szeged (Sz), Harary (H), Wiener (W), Hyper-Wiener (WW) and Wiener Polarity (Wp) indices to the thermodynamic properties such as thermal energy E_{th} (J/mol) and heat capacity (C_V J/mol. K) of amino acids is represented. The thermodynamic properties are taken from HF level using the ab initio 6-31G basis sets from the program package Gaussian 98. We have used Multiple Linear Regression (MLR) techniques and followed back ward regression analysis for obtaining properties. By analyzing the correlation between the indices in the made models, the most suitable indicators for modeling properties were determined. The predictive powers of the models were discussed using leave-one-out (LOO) crossvalidation. The obtained results show that combining of the two descriptors (J, ¹X) could be used successfully for modeling and predicting the heat capacity (C_V), and thermal energy (E_{th}) of amino acid derivatives.

Keywords: Amino acids; QSPR; MLR method; topological indices; validation.

Introduction

Amino acids (AAs) are building blocks proteins. AAs are organic of compounds with an amino group (-NH₂) and an acid carboxy group (-COOH) [1]. There are over 500 amino acids found in nature, yet, of these, the human genetic code includes information for only 20 amino acids. Every protein in the human body is made up of some linked combination of these amino acids.

In theoretical chemistry, topological indices have been used to develop molecular graph descriptors in order to express chemical structures in the numerical form [2,3]. Graph theory

successfully applied in has been developing novel topological indices to predict some thermodynamic properties of compounds [4]. It is one of the most important tools in the fields of Ouantitative Structure-Property Relationship (QSPR) and Quantitative Structure-Activity Relationship (QSAR) QSPR/QSAR [5-8]. are mathematical models designed for predicting the properties of a wide range of chemical compounds based on the correlation between these properties and molecular descriptors as topological indices [9-14]. Topological indices (TI) are the digital values associated to chemical constitution for

Eurasian Chem. Commun., 2019, 276-289

correlation of chemical structure with various physical properties, chemical reactivity or biological activity and mathematical methods useful for finding good relationship between several data of the properties in these materials [15–17]. The use of these methods for making good correlations between several data properties of important. Graphchemicals is theoretical topological indices are taken into consideration attention because they can be obtained directly without any trial achieved of the molecular structure [18]. For this reason, these indices in QSPR/QSAR studies which are means of a simple and clear design are molecules. Topological indices such as molecular connectivity index of Randic' [19] and the Wiener [20], Balaban [21], Hosoya [22] indices have received great attention due to their applications in chemistry and drug research. Relationship between topological indices and thermodynamic properties such as heat capacity, standard Gibbs energy of formation, thermal energy and entropy of the monocarboxylic acids, alkanes [23,24], alcohols [25], aldehydes and ketones [26,27] has been searched. QSAR studies of the natural and unnatural amino acids were developed using partial least squares (PLS) regression and a novel 3D amino acid descriptor [28,29]. Structural topology scale (STscale) as a novel amino acid descriptor the study applied for of was quantitative sequence-activity models (QSAMs) of 167 amino acids using regression [30]. Quantitative PLS relationships studies between structure and physical properties using topological and quantum-chemical molecular descriptors were employed to derive descriptors for the 20 natural amino acids [31]. To determine the three dimensional structure of protein,

10 orthogonal factors were obtained by using 188 properties of the natural amino acids [32]. In the present study, the multiple linear regression (MLR) techniques and back ward methods are estimated for modeling the thermal energy (E_{th}) and heat capacity (C_V) of 80 amino acids. The main aim of this study is to provide reliable QSPR models for predicting thermodynamic properties of 80 natural and unnatural amino acid derivatives.

Materials and methods

The data set consists of 80 compounds, 20 natural amino acid and 60 unnatural of the amino acids have been selected. A complete list of the compound names Table are listed in 1. All thermodynamic data of the present investigation were obtained from the quantum mechanics methodology with Hartree- Fock (HF) level using the ab initio 6-31G basis sets. The quantum chemistry data of the amino acid derivatives are listed in Table 1.

Topological indices

Mathematical descriptors have been widely used in structure-propertyactivity studies. The descriptors used for the QSPR analyses were calculated with the chemicalize database program topological [33]. The indices (molecular descriptors) were Wiener index, W [20,34], Hyper-Wiener index, WW [35,36], Wiener polarity index, Wp [37], Randić index, ¹X [19, 38], Balaban index, J [21,39], Harary number, H [40], Szeged index, Sz [41,42]. Nowadays, hundreds of topological indices, suitable to describe different properties, are reported. Seven topological indices tested in the present study are recorded in Table 2.

Statistical analysis

In the present study, Structure- Property models (MLR models) are generated using the multilinear regression procedure of SPSS version 20 and backward stepwise regression was used to construct the QSPR models.

Regression analyses

The thermal energy $(E_{th} kJ/mol)$ and heat capacity $(C_v J/mol. K)$ are used as the dependent variable and topological indices as the independent variables.

	Ta	ble 1. Amino acid	l deriva	tives used in present stu	ıdy
No.	Compounds	Structure	No.	Compounds	Structure
1	Alanine	H ₃ C OH	15	Asparagine	
2	Valine	H ₃ C OH	16	Isoleucine	
3	Leucine		17	Arginine	
4	Serine		18	N-(2- Aminoethyl)cysteine	$HS \longrightarrow H \longrightarrow H \longrightarrow H \longrightarrow H \longrightarrow H \longrightarrow H^{H}$
5	Threonine		19	2- Aminophenylacetate	HO U H ₂ N
6	Tyrosine		20	D-allo-Isoleucine	HO H H CH ₃
7	Methionine		21	Allylglycine	
8	Glutamat	OH OH OH NH2	22	4-Amino-L- phenylalanine	HO H H
9	Glutamine		23	β-Alanine	HO H H H NH ₂
10	Histidine	HO H	24	2- Bromophenylalanine	HO H H
11	Aspartic acid		25	3-Cyclohexylalanine	
12	Tryptophan	HO H H H ₂ N ^{W¹} H	26	L-Citrulline	
13	Phenylalanine		27	3-Chloro-L-alanine	
14	Cysteine		28	2,4- Diaminobutanoic acid	HO H

No.	Compounds	Structure	No.	Compounds	Structure
45	O-Benzyltyrosine		54	L-6- Hydroxydopa	
46	O-Ethyltyrosine		55	vinylglycine	Н Н ОН
47	O-Methylserine		56	L- selenocysteine	HO HO HO H H H H H H H H H H H H SeH
48	O- Methylthreonine	HO HO OH	57	3-(9- Anthryl)alanin e	
49	O-Methyltyrosine	H H H OH	58	3-(1- Benzothiophe n-3-yl)-L- alanine	H H OH
50	L-Ornithine	$HO \xrightarrow{H} H \xrightarrow{H} H \xrightarrow{H} H \xrightarrow{H} H$	59	(2S)-2-Amino- 3-(4- biphenylyl)pro panoic acid	HO HH2 HO HH2 HO HH2 HO HH2 HO HH2 HO HH2 HO HH2 HO HA2 HO H2 HO H2 HO H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H
51	Penicillamine		60	DL- Homocysteine	HO HH2 H H HO H H H SH
52	Pipecolic acid	ОН	61	Statine	HO H
53	Sarcosine		62	3-(2-Thienyl)- L-alanine	S NH ₂

No.	Compounds	Structure	No.	Compounds	Structure
63	γ-Aminobutyric acid	$HO \longrightarrow C \longrightarrow CH \longrightarrow CH \longrightarrow CH \longrightarrow CH \longrightarrow CH \longrightarrow CH \longrightarrow C$	72	(2R)-2- Amino-4-(4- methoxyphe nyl)butanoic acid	H H O H H H O H H H
64	Aminocaproic acid	$HO \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H}$	73	N-3- Pyridinylala nine	№ Н ОН
65	1- Aminocyclohexanecarbo xylic acid	NH ₂ O OH	74	Tetrahydrois oquinoline- 3-carboxylic acid	ОН
66	4-Benzoyl-L- phenylalanine		75	N,N- Diphenylgly cine	И ОН
67	N-(2-Chloroethyl)glycine		76	N,N- Dibenzylgly cine	H H H
68	4-Chlorophenylalanine		77	2- Aminobutan oic acid	$H_{3}C$ H H_{1} H_{2}
69	2-Amino-2-ethylbutanoic	HO H_2N HO H_2C CH_2 HO H_2C CH_3 HO H_3	78	3- Methylprolin e	Н он снз
70	2,6-Dimethyltyrosine	HO H H	79	3- Hydroxyvali ne	HO H ₃ C H ₁ C H ₂ O H ₂ O H
71	1-Indanylglycine	ну н	80	β- hydroxyaspa rtate	HO O NH ₂ OH

No 'X J II W WW Wp Sz. No 'X J II W WW Wp Sz. 1 29 4 47 29 9.33 2.99 2.64 41 46 6 83 46 123 3.14 3.18 2 18 6.67 2.54 2.27 42 70 7 143 70 14.73 3.17 3.68 3 65 8 122 65 15.17 3.46 3.55 45 582 18 1342 40.0 2.05 7.13 6 376 15 735 268 32.99 2.05 6.09 46 70 7 143 70 14.73 3.17 3.64 2.22 6.63 9 182 10 397 165 25.6 1.98 4.12 17 797 3.3 5.64 1.8 11.8 1.8 <td< th=""><th></th><th>157</th><th></th><th></th><th>xx7</th><th></th><th></th><th></th><th>N</th><th>187</th><th>T</th><th></th><th></th><th>**/**/</th><th>***</th><th>- C</th></td<>		157			xx7				N	187	T			**/**/	***	- C
1 29 4 47 29 9.33 2.99 2.64 41 46 6 83 46 12 3.14 5.18 2 18 2 28 18 6.67 2.54 2.27 42 70 7 713 3.61 35.55 2.02 7.02 4 96 8 102 65 15.17 3.46 3.55 45 582 18 1342 420 40.23 2.05 7.13 6 376 15 735 268 32.99 2.05 6.09 46 70 7 143 70 14.73 3.17 3.68 7 102 8 235 102 17.55 3.16 4.18 47 92 10 188 92 18.23 3.88 3.83 3.73 8.04 1.13 8.03 1.02 1.05 3.14 4.18 10 18 20 10.18 <th2< th=""><th>No</th><th>¹X</th><th>J</th><th>Н</th><th>w</th><th>ww</th><th>Wp</th><th>Sz</th><th>No</th><th>'X</th><th>J</th><th>Н</th><th>W</th><th>ww</th><th>Wp</th><th>Sz</th></th2<>	No	¹ X	J	Н	w	ww	Wp	Sz	No	'X	J	Н	W	ww	Wp	Sz
2 18 2 28 18 6.67 2.54 2.27 42 70 7 143 70 14.73 3.17 3.68 3 65 8 122 65 15.17 3.46 4.09 43 440 14 1438 25 4052 988 61.33 1.59 9.70 6 376 15 735 268 32.99 2.05 6.09 46 70 7 143 70 14.73 3.17 3.68 7 102 8 233 102 17.55 3.16 4.18 47 92 10 188 92 18.23 3.58 4.09 8 136 9 330 136 20.87 3.38 4.04 50 86 10 164 86 18.33 3.88 3.88 10 96 8 202 167 7.72 51 103 8 173 4.14 </th <th>1</th> <th>29</th> <th>4</th> <th>47</th> <th>29</th> <th>9.33</th> <th>2.99</th> <th>2.64</th> <th>41</th> <th>46</th> <th>6</th> <th>83</th> <th>46</th> <th>12</th> <th>3.14</th> <th>3.18</th>	1	29	4	47	29	9.33	2.99	2.64	41	46	6	83	46	12	3.14	3.18
3 65 8 122 65 15.17 3.46 4.09 43 460 15 1137 511 356 2.02 7.02 4 96 8 206 96 17.97 3.38 4.04 441 1438 25 4052 988 61.31 1.59 9.65 5 65 8 122 65 15.17 3.46 3.55 4.55 582 18 1342 400 40.23 2.05 4.08 7 102 8 235 102 17.55 3.16 4.18 477 92 10 188 92 18.23 3.58 4.08 10 96 8 206 96 17.97 3.38 4.04 50 86 10 164 86 18.83 3.88 3.85 11 518 20 1018 302 21.2 21.17 2.2 6.21 <th12< th=""> 3.1 4.13</th12<>	2	18	2	28	18	6.67	2.54	2.27	42	70	7	143	70	14.73	3.17	3.68
49682069617.973.384.0444143825405298861.331.599.6556581226515.173.463.554558218134242040.232.057.1363761573526832.992.056.09467071437014.733.173.687102823510217.553.164.1847792101889218.233.584.09813693301362.873.35.0748472179773373.66.42.226.639182103701652.561.985.24910281331.922.054.2122931354221229.172.26.245214291768819.151.984.3134668346123.143.1853323583292.632.771414393681432.0453.134.635452421103537441.992.316.911592101889218.233.584.09554668346123.143.181624711739 <th>3</th> <th>65</th> <th>8</th> <th>122</th> <th>65</th> <th>15.17</th> <th>3.46</th> <th>4.09</th> <th>43</th> <th>460</th> <th>15</th> <th>1137</th> <th>361</th> <th>35.56</th> <th>2.02</th> <th>7.02</th>	3	65	8	122	65	15.17	3.46	4.09	43	460	15	1137	361	35.56	2.02	7.02
56581226515.173.463.554558218134242040.232.057.1363761573526832.992.056.09467071437014.733.173.687102823510217.553.164.1847792101889218.233.584.098136933013620.873.35.07484721799733736.642.226.63918210381652.561985.249102823510217.553.164.181096820617.173.384.045086101648618.833.883.881151820101836942.961.767.725110381738719.322.054.2122931354221229.172.26.245214291768819.151.984.3134668346123.143.18533233541.992.343.181414393681422.912.325.545.64668346123.143.18152110138<	4	96	8	206	96	17.97	3.38	4.04	44	1438	25	4052	988	61.33	1.59	9.65
63761573526832.992.056.09467071437014.733.173.687102823510217.553.164.184792101889218.233.584.098136933013620.873.35.07484721799733736.642.226.6391821039716525.61.985.249102823510217.553.164.18109682069617.973.384.045086101648618.833.883.851151820101836942.961.767.725110381738719.322.054.12122931354221229.172.26.245214291768891.51.984.3134635421221.03.134.635452421105337441.992.316.911439038614320.453.134.635452421105337441.992.316.911592101889218.233.584.09554668346123.143.181624711739	5	65	8	122	65	15.17	3.46	3.55	45	582	18	1342	420	40.23	2.05	7.13
7102823510217.553.164.184792101889218.233.584.098136933013620.873.35.07484721799733736.642.226.639182103971652.561.985.249102823510217.553.164.18109682069617.973.384.045086101648618.833.883.851151820101836942.961.767.725110381738719.322.054.2122931354221229.172.26.245214291768819.151.984.33134668346123.134.6354524668346123.143.181592101889218.233.584.09554668346123.143.18162471173924726.923.25.54564668346123.143.18171341031713420.833.44.725779321207576251.062.062.0316247 <t< th=""><th>6</th><th>376</th><th>15</th><th>735</th><th>268</th><th>32.99</th><th>2.05</th><th>6.09</th><th>46</th><th>70</th><th>7</th><th>143</th><th>70</th><th>14.73</th><th>3.17</th><th>3.68</th></t<>	6	376	15	735	268	32.99	2.05	6.09	46	70	7	143	70	14.73	3.17	3.68
8136933013620.873.35.07484721799733736.642.226.6391821039716525.61.985.249102823510217.553.164.18109682069617.973.384.045086101648618.833.883.851151820101836942.961.767.725110381738719.322.054.2122931354221229.172.26.245214291768819.151.984.3134668346123.143.1853323583292.632.7714143936814320.453.134.635452421103537441.992.316.911592101889218.233.584.09554668346123.143.18162471173924726.923.25.54564668346123.143.18171341031714320.833.44.72577932129776251.062.031.061912212<	7	102	8	235	102	17.55	3.16	4.18	47	92	10	188	92	18.23	3.58	4.09
9182103971652.5.61.985.249102823510217.553.164.18109682069617.973.384.045086101648618.833.883.851151820101836942.961.767.725110381738719.322.054.2122931354221229.172.26.245214291768819.151.984.3134668346123.143.1853323583292.632.7714143936814320.453.134.635452421103537441.992.316.911592101889218.233.584.09554668346123.143.18162471173924726.923.25.54564668346123.143.18171341031713420.833.44.72577932129776251.062.039.0611823412362152163368507071437014.733.173.68200771437	8	136	9	330	136	20.87	3.3	5.07	48	472	17	997	337	36.64	2.22	6.63
109682069617.973.384.045086101648618.833.883.851151820101836942.961.767.725110381738719.322.054.2122931354221229.172.26.245214291768819.151.984.3134668346123.143.1853323583292.632.7714143936814320.453.134.635452421103537441.992.316.911592101889218.233.584.09554668346123.143.18162471173924726.923.25.54564668346123.143.18171341031713420.833.44.725779321297576251.062.039.06182341236215825.982.085.25851820101836942.961.767.1819122122591222163.84.6359106124241468354.211.616620707 <th>9</th> <th>182</th> <th>10</th> <th>397</th> <th>165</th> <th>25.6</th> <th>1.98</th> <th>5.2</th> <th>49</th> <th>102</th> <th>8</th> <th>235</th> <th>102</th> <th>17.55</th> <th>3.16</th> <th>4.18</th>	9	182	10	397	165	25.6	1.98	5.2	49	102	8	235	102	17.55	3.16	4.18
11 518 20 1018 369 42.96 1.76 7.72 51 103 8 173 87 19.32 2.05 4.2 12 293 13 542 212 29.17 2.2 6.24 52 142 9 176 88 19.15 1.98 4.3 13 46 6 83 46 12 3.14 3.18 53 32 3 58 32 9 2.63 2.77 14 143 9 368 143 20.45 3.13 4.63 54 524 21 1035 374 41.99 2.31 6.91 15 92 10 188 92 18.23 3.58 4.09 55 46 6 83 46 12 3.14 3.18 17 134 10 317 14.3 3.17 3.86 60 70 7 143 70 14.73	10	96	8	206	96	17.97	3.38	4.04	50	86	10	164	86	18.83	3.88	3.85
12 293 13 542 212 29.17 2.2 6.24 52 142 9 176 88 19.15 1.98 4.3 13 46 6 83 46 12 3.14 3.18 53 32 3 58 32 9 2.63 2.77 14 143 9 368 143 20.45 3.13 4.63 54 524 21 1035 374 41.99 2.31 6.91 15 92 10 188 92 18.23 3.58 4.09 55 46 6 83 46 12 3.14 3.18 16 247 11 739 247 26.92 3.2 5.5 58 518 20 1018 369 42.96 1.76 7.18 19 122 12 259 122 21.6 3.8 4.63 59 1061 24 2414 683 </th <th>11</th> <th>518</th> <th>20</th> <th>1018</th> <th>369</th> <th>42.96</th> <th>1.76</th> <th>7.72</th> <th>51</th> <th>103</th> <th>8</th> <th>173</th> <th>87</th> <th>19.32</th> <th>2.05</th> <th>4.2</th>	11	518	20	1018	369	42.96	1.76	7.72	51	103	8	173	87	19.32	2.05	4.2
13 46 6 83 46 12 3.14 3.18 53 32 3 58 32 9 2.63 2.77 14 143 9 368 143 20.45 3.13 4.63 54 524 21 1035 374 41.99 2.31 6.91 15 92 10 188 92 18.23 3.58 4.09 55 46 6 83 46 12 3.14 3.18 16 247 11 739 247 26.92 3.2 5.54 56 46 6 83 46 12 3.14 3.18 17 134 10 317 134 20.83 3.4 4.72 57 793 21 2975 762 51.06 2.03 9.06 122 122 259 122 21.6 3.8 4.63 59 1061 24 2414 683 54.21<	12	293	13	542	212	29.17	2.2	6.24	52	142	9	176	88	19.15	1.98	4.3
14 143 9 368 143 20.45 3.13 4.63 54 524 21 1035 374 41.99 2.31 6.91 15 92 10 188 92 18.23 3.58 4.09 55 46 6 83 46 12 3.14 3.18 16 247 11 739 247 26.92 3.2 5.54 56 46 6 83 46 12 3.14 3.18 17 134 10 317 134 20.83 3.4 4.72 57 793 21 2975 762 51.06 2.03 9.06 18 234 12 362 158 25.98 2.08 5.2 58 518 20 1018 369 42.96 1.76 7.18 19 122 12 259 122 21.6 3.8 4.63 59 1061 24 2414 683 54.21 1.61 8.66 20 70 7 143 <t< th=""><th>13</th><th>46</th><th>6</th><th>83</th><th>46</th><th>12</th><th>3.14</th><th>3.18</th><th>53</th><th>32</th><th>3</th><th>58</th><th>32</th><th>9</th><th>2.63</th><th>2.77</th></t<>	13	46	6	83	46	12	3.14	3.18	53	32	3	58	32	9	2.63	2.77
15 92 10 188 92 18.23 3.58 4.09 55 46 6 83 46 12 3.14 3.18 16 247 11 739 247 26.92 3.2 5.54 56 46 6 83 46 12 3.14 3.18 17 134 10 317 134 20.83 3.4 4.72 57 793 21 2975 762 51.06 2.03 9.06 18 234 12 362 158 25.98 2.08 5.2 58 518 20 1018 369 42.96 1.76 7.18 19 122 12 259 122 21.6 3.8 4.63 59 1061 24 2414 683 54.21 1.61 8.66 20 70 7 143 70 14.73 3.17 3.86 60 70 7 143 70 14.73 3.17 3.68 21 376 6 83 46 </th <th>14</th> <th>143</th> <th>9</th> <th>368</th> <th>143</th> <th>20.45</th> <th>3.13</th> <th>4.63</th> <th>54</th> <th>524</th> <th>21</th> <th>1035</th> <th>374</th> <th>41.99</th> <th>2.31</th> <th>6.91</th>	14	143	9	368	143	20.45	3.13	4.63	54	524	21	1035	374	41.99	2.31	6.91
16 247 11 739 247 26.92 3.2 5.54 56 46 6 83 46 12 3.14 3.18 17 134 10 317 134 20.83 3.4 4.72 57 793 21 2975 762 51.06 2.03 9.06 18 234 12 362 158 25.98 2.08 5.2 58 518 20 1018 369 42.96 1.76 7.18 19 122 12 259 122 21.6 3.8 4.63 59 1061 24 2414 683 54.21 1.61 8.66 20 70 7 143 70 14.73 3.17 3.86 60 70 7 143 70 14.73 3.17 3.86 21 376 6 83 46 12 3.14 3.18 61 220 12 576 220 2.804 3.68 3.27 23 32 15 5.1	15	92	10	188	92	18.23	3.58	4.09	55	46	6	83	46	12	3.14	3.18
17 134 10 317 134 20.83 3.4 4.72 57 793 21 2975 762 51.06 2.03 9.06 18 234 12 362 158 25.98 2.08 5.2 58 518 20 1018 369 42.96 1.76 7.18 19 122 12 259 122 21.6 3.8 4.63 59 1061 24 2414 683 54.21 1.61 8.66 20 70 7 143 70 14.73 3.17 3.86 60 70 7 143 70 14.73 3.17 3.68 21 376 6 83 46 12 3.14 3.18 61 220 12 576 220 28.04 3.68 5.2 23 32 3 58 32 9 2.63 2.77 3 52 4 108 52 11.48 2.68 3.27 24 352 16 659 256<	16	247	11	739	247	26.92	3.2	5.54	56	46	6	83	46	12	3.14	3.18
18 234 12 362 158 25.98 2.08 5.2 58 518 20 1018 369 42.96 1.76 7.18 19 122 12 259 122 21.6 3.8 4.63 59 1061 24 2414 683 54.21 1.61 8.66 20 70 7 143 70 14.73 3.17 3.86 60 70 7 143 70 14.73 3.17 3.86 21 376 6 83 46 12 3.14 3.18 61 220 12 576 220 28.04 3.68 5.43 22 375 15 735 268 32.99 2.05 6.09 62 182 10 397 165 25.6 1.98 5.2 23 32 3 58 32 9 2.63 2.77 3 52 4 108 52 11.48 2.68 3.27 24 352 16 659 256 </th <th>17</th> <th>134</th> <th>10</th> <th>317</th> <th>134</th> <th>20.83</th> <th>3.4</th> <th>4.72</th> <th>57</th> <th>793</th> <th>21</th> <th>2975</th> <th>762</th> <th>51.06</th> <th>2.03</th> <th>9.06</th>	17	134	10	317	134	20.83	3.4	4.72	57	793	21	2975	762	51.06	2.03	9.06
19 122 12 259 122 21.6 3.8 4.63 59 1061 24 2414 683 54.21 1.61 8.66 20 70 7 143 70 14.73 3.17 3.86 60 70 7 143 70 14.73 3.17 3.68 21 376 6 83 46 12 3.14 3.18 61 220 12 576 220 28.04 3.68 5.43 22 375 15 735 268 32.99 2.05 6.09 62 182 10 397 165 25.6 1.98 5.2 23 32 3 58 32 9 2.63 2.77 3 52 4 108 52 11.48 2.68 3.27 24 352 16 659 256 3.34 2.15 6.11 64 114 6 297 111 23.23 2.48 4.65 26 46 6 83 46	18	234	12	362	158	25.98	2.08	5.2	58	518	20	1018	369	42.96	1.76	7.18
20 70 7 143 70 14.73 3.17 3.86 60 70 7 143 70 14.73 3.17 3.68 21 376 6 83 46 12 3.14 3.18 61 220 12 576 220 28.04 3.68 5.43 22 375 15 735 268 32.99 2.05 6.09 62 182 10 397 165 2.56 1.98 5.2 23 32 3 58 32 9 2.63 2.77 3 52 4 108 52 11.48 2.68 3.27 24 352 16 659 256 33.4 2.15 6.11 64 114 6 297 114 16.84 2.75 4.27 25 247 11 739 247 26.92 3.2 5.54 65 174 13 220 111 2.323 2.48 4.65 26 46 6 83 46	19	122	12	259	122	21.6	3.8	4.63	59	1061	24	2414	683	54.21	1.61	8.66
21 376 6 83 46 12 3.14 3.18 61 220 12 576 220 28.04 3.68 5.43 22 375 15 735 268 32.99 2.05 6.09 62 182 10 397 165 25.6 1.98 5.2 23 32 3 58 32 9 2.63 2.77 3 52 4 108 52 11.48 2.68 3.27 24 352 16 659 256 33.4 2.15 6.11 64 114 6 297 114 16.84 2.75 4.27 25 247 11 739 247 26.92 3.2 5.54 65 174 13 220 111 23.23 2.48 4.65 26 46 6 83 46 12 3.14 3.18 66 842 25 1426 504 52.23 1.98 8.08 27 70 7 143 70	20	70	7	143	70	14.73	3.17	3.86	60	70	7	143	70	14.73	3.17	3.68
22 375 15 735 268 32.99 2.05 6.09 62 182 10 397 165 25.6 1.98 5.2 23 32 3 58 32 9 2.63 2.77 3 52 4 108 52 11.48 2.68 3.27 24 352 16 659 256 33.4 2.15 6.11 64 114 6 297 114 16.84 2.75 4.27 25 247 11 739 247 26.92 3.2 5.54 65 174 13 220 111 23.23 2.48 4.65 26 46 6 83 46 12 3.14 3.18 66 842 25 1426 504 52.23 1.98 8.08 27 70 7 143 70 14.73 3.17 3.68 67 1366 28 3464 916 63.24 1.73 9.58 28 46 6 83 46 <th>21</th> <th>376</th> <th>6</th> <th>83</th> <th>46</th> <th>12</th> <th>3.14</th> <th>3.18</th> <th>61</th> <th>220</th> <th>12</th> <th>576</th> <th>220</th> <th>28.04</th> <th>3.68</th> <th>5.43</th>	21	376	6	83	46	12	3.14	3.18	61	220	12	576	220	28.04	3.68	5.43
23 32 3 58 32 9 2.63 2.77 3 52 4 108 52 11.48 2.68 3.27 24 352 16 659 256 33.4 2.15 6.11 64 114 6 297 114 16.84 2.75 4.27 25 247 11 739 247 26.92 3.2 5.54 65 174 13 220 111 23.23 2.48 4.65 26 46 6 83 46 12 3.14 3.18 66 842 25 1426 504 52.23 1.98 8.08 27 70 7 143 70 14.73 3.17 3.68 67 1366 28 3464 916 63.24 1.73 9.58 28 46 6 83 46 12 3.14 3.18 68 79 5 185 79 14.1 2.72 3.77 29 451 18 893 321	22	375	15	735	268	32.99	2.05	6.09	62	182	10	397	165	25.6	1.98	5.2
24 352 16 659 256 33.4 2.15 6.11 64 114 6 297 114 16.84 2.75 4.27 25 247 11 739 247 26.92 3.2 5.54 65 174 13 220 111 23.23 2.48 4.65 26 46 6 83 46 12 3.14 3.18 66 842 25 1426 504 52.23 1.98 8.08 27 70 7 143 70 14.73 3.17 3.68 67 1366 28 3464 916 63.24 1.73 9.58 28 46 6 83 46 12 3.14 3.18 68 79 5 185 79 14.1 2.72 3.77 29 451 18 893 321 37.31 2.33 6.5 69 376 15 735 268 32.99 2.05 6.09 30 376 15 735 2	23	32	3	58	32	9	2.63	2.77	3	52	4	108	52	11.48	2.68	3.27
252471173924726.923.25.54651741322011123.232.484.65264668346123.143.186684225142650452.231.988.08277071437014.733.173.6867136628346491663.241.739.58284668346123.143.18687951857914.12.723.77294511889332137.312.336.5693761573526832.992.056.09303761573526832.992.056.097086121368618.753.924.06312541864025432.794.155.91714881885831338.381.816.77321801146918024.13.375.077257818139042839.951.997.133392101889218.233.584.09732891543118831.371.795.7734707143.37014.733.173.68742931354221229.172.25.735	24	352	16	659	256	33.4	2.15	6.11	64	114	6	297	114	16.84	2.75	4.27
264668346123.143.186684225142650452.231.988.08277071437014.733.173.6867136628346491663.241.739.58284668346123.143.18687951857914.12.723.77294511889332137.312.336.5693761573526832.992.056.09303761573526832.992.056.097086121368618.753.924.06312541864025432.794.155.91714881885831338.381.816.77321801146918024.13.375.077257818139042839.951.997.133392101889218.233.584.09732891543118831.371.795.77347071437014.733.173.68742931354221229.172.25.73510381738719.322.054.2754621858023835.221.646.27	25	247	11	739	247	26.92	3.2	5.54	65	174	13	220	111	23.23	2.48	4.65
27 70 7 143 70 14.73 3.17 3.68 67 1366 28 3464 916 63.24 1.73 9.58 28 46 6 83 46 12 3.14 3.18 68 79 5 185 79 14.1 2.72 3.77 29 451 18 893 321 37.31 2.33 6.5 69 376 15 735 268 32.99 2.05 6.09 30 376 15 735 268 32.99 2.05 6.09 70 86 12 136 86 18.75 3.92 4.06 31 254 18 640 254 32.79 4.15 5.91 71 488 18 858 313 38.38 1.81 6.77 32 180 11 469 180 24.1 3.37 5.07 72 578 18 1390 428 39.95 1.99 7.13 33 92 10 188	26	46	6	83	46	12	3.14	3.18	66	842	25	1426	504	52.23	1.98	8.08
284668346123.143.18687951857914.12.723.77294511889332137.312.336.5693761573526832.992.056.09303761573526832.992.056.097086121368618.753.924.06312541864025432.794.155.91714881885831338.381.816.77321801146918024.13.375.077257818139042839.951.997.133392101889218.233.584.09732891543118831.371.795.77347071437014.733.173.68742931354221229.172.25.73510381738719.322.054.2754621858023835.221.646.27	27	70	7	143	70	14.73	3.17	3.68	67	1366	28	3464	916	63.24	1.73	9.58
29 451 18 893 321 37.31 2.33 6.5 69 376 15 735 268 32.99 2.05 6.09 30 376 15 735 268 32.99 2.05 6.09 70 86 12 136 86 18.75 3.92 4.06 31 254 18 640 254 32.79 4.15 5.91 71 488 18 858 313 38.38 1.81 6.77 32 180 11 469 180 24.1 3.37 5.07 72 578 18 1390 428 39.95 1.99 7.13 33 92 10 188 92 18.23 3.58 4.09 73 289 15 431 188 31.37 1.79 5.77 34 70 7 143 70 14.73 3.17 3.68 74 293 13 542 212 29.17 2.2 5.7 35 103 8 173	28	46	6	83	46	12	3.14	3.18	68	79	5	185	79	14.1	2.72	3.77
303761573526832.992.056.097086121368618.753.924.06312541864025432.794.155.91714881885831338.381.816.77321801146918024.13.375.077257818139042839.951.997.133392101889218.233.584.09732891543118831.371.795.77347071437014.733.173.68742931354221229.172.25.73510381738719.322.054.2754621858023835.221.646.27	29	451	18	893	321	37.31	2.33	6.5	69	376	15	735	268	32.99	2.05	6.09
31 254 18 640 254 32.79 4.15 5.91 71 488 18 858 313 38.38 1.81 6.77 32 180 11 469 180 24.1 3.37 5.07 72 578 18 1390 428 39.95 1.99 7.13 33 92 10 188 92 18.23 3.58 4.09 73 289 15 431 188 31.37 1.79 5.77 34 70 7 143 70 14.73 3.17 3.68 74 293 13 542 212 29.17 2.2 5.7 35 103 8 173 87 19.32 2.05 4.2 75 462 18 580 238 35.22 1.64 6.27	30	376	15	735	268	32.99	2.05	6.09	70	86	12	136	86	18.75	3.92	4.06
32 180 11 469 180 24.1 3.37 5.07 72 578 18 1390 428 39.95 1.99 7.13 33 92 10 188 92 18.23 3.58 4.09 73 289 15 431 188 31.37 1.79 5.77 34 70 7 143 70 14.73 3.17 3.68 74 293 13 542 212 29.17 2.2 5.7 35 103 8 173 87 19.32 2.05 4.2 75 462 18 580 238 35.22 1.64 6.27	31	254	18	640	254	32.79	4.15	5.91	71	488	18	858	313	38.38	1.81	6.77
33 92 10 188 92 18.23 3.58 4.09 73 289 15 431 188 31.37 1.79 5.77 34 70 7 143 70 14.73 3.17 3.68 74 293 13 542 212 29.17 2.2 5.7 35 103 8 173 87 19.32 2.05 4.2 75 462 18 580 238 35.22 1.64 6.27	32	180	11	469	180	24.1	3.37	5.07	72	578	18	1390	428	39.95	1.99	7.13
34 70 7 143 70 14.73 3.17 3.68 74 293 13 542 212 29.17 2.2 5.7 35 103 8 173 87 19.32 2.05 4.2 75 462 18 580 238 35.22 1.64 6.27	33	92	10	188	92	18.23	3.58	4.09	73	289	15	431	188	31.37	1.79	5.77
35 103 8 173 87 19.32 2.05 4.2 75 462 18 580 238 35.22 1.64 6.27	34	70	7	143	70	14.73	3.17	3.68	74	293	13	542	212	29.17	2.2	5.7
	35	103	8	173	87	19.32	2.05	4.2	75	462	18	580	238	35.22	1.64	6.27

Table 2. Amino acids derivatives and their topological indices

36	736	15	735	268	32.99	2.05	6.09	76	762	22	1437	510	51.4	1.95	8.27
37	46	6	83	46	12	3.14	3.18	77	1044	22	2498	756	58.38	1.61	9.24
38	724	23	1213	434	47.43	1.69	7.68	78	46	6	83	46	12	3.14	3.18
39	772	22	1377	458	46.72	1.59	7.66	79	97	9	159	84	19.5	2.13	4.22
40	102	8	235	102	17.55	3.16	4.18	80	97	10	164	86	18.83	3.88	3.85

The models are assessed with R value (correlation coefficient), the R^2 (squared multiple correlation coefficient), the R^2_{adj} (adjusted correlation coefficient), the RMSE value (root of the mean square of errors), the F value (Fischer statistic), the D value (Durbin-Watson) and the Sig (significant).

Results

Multiple linear regression analysis has been carried out to derive the best QSPR model and strongest correlations are identified by the Back ward step wise regression routine implemented in SPSS is used to develop the linear model for the prediction of the thermophysical properties.

QSPR models

The best linear model for Cv and E_{th} contains three topological descriptors, namely, Randić (¹X), Balaban (J), Hyper-Wiener (WW), Wiener polarity (Wp), Wiener (W) and Szeged (Sz) indices. The regression parameters of the best three descriptors correlation model are gathered in equation (1, 2).

N=80, R=0.973, $R^2 = 0.946$, $R^2_{adj} = 0.943$, RMSE = 9.566, F= 261.317, Sig=0.000 DW=1.783

N=80, R=0.934, R² =0.0.873, R²_{adj} = 0.867, RMSE= 51.932, F=129.218, Sig=0.000 DW=1.872

Results and discussion

We studied the relationship between topological indices to the thermal energy (E_{th}) and heat capacity (C_v) of 80 amino acids derivatives. In this study, to find the best model for predicting the mentioned properties, we will use the following sections.

The Durbin-Watson statistic

The Durbin-Watson statistic ranges in value from 0 to 4. A value near 2 indicates non-autocorrelation; a value positive indicates toward 0 autocorrelation; a value toward 4 negative indicates autocorrelation. Therefore the value of Durbin-Watson statistic is close to 2 if the errors are uncorrelated. In our all models, the value of Durbin-Watson statistic is close to 2(See eqs.1, 2) and hence the errors are uncorrelated.

Multicollinearity

Multicollinearity in regression is a condition that occurs when some predictor variables in the model are correlated with other predictor Good regression model variables. should not exist in correlation between the independent variables or should not happen multicollinearity. Test multicollinearity is as a basis the variance inflation factor (VIF) value of multicollinearity test results using SPSS. If the VIF value lies between1-10, then there is no multicollinearity, and if the VIF<1 or >10, then there is

final multicollinearity. In all our models. the multicollinearity has values existed. because the of independent correlations between variables are near to one and VIFs value lies are not use of between 1-10.

Validation

Predictive power of the MLR models for a QSAR/QSPR analyses can be conveniently estimated using statistical parameters. A good OSPR model should have both suitable relativity and good predictability. In the constructed model internal validation is usually done by leave-one-out (LOO). We studied the validation of linearity between the molecular descriptors in the models 1 and 2. We obtained by SPSS the Pearson coefficient correlation and collinearity statistics as shown in Tables 3 and 4. For model 1 the Pearson correlation (Sz, W) and (Wp, ${}^{1}X$) are near one, and VIF (Sz),

(W), $({}^{1}X)$, and VIF (Wp)>10(See Table 3). After removed (W) from this model, we corrected models 1 as follows: C_{v} = -22.418+ 26.498 (${}^{1}X$) + 17.460 (J) (3)

N=80, R=0.964, R^2 =0.930, R^2_{adj} = 0.928, RMSE= 10.698, F=513.412, Sig=0.000 DW=1.795, Q^2_{LOO} =0.824 For model 2 the Pearson correlation (WW, W), (WW, ¹X) and (¹X, W) are near one, and VIF (WW), (¹X) and VIF (W)>10(See Table 4). After removed Wiener index from this model, we corrected model 2 as follow: Eth = -93.740+ 87.647 (¹X) +65.787(J) (4)

 Table 3. Correlation between the molecular descriptors (model 1)

	I	Pearson o	correlation	ns	Collinearity	Corrected model		
	Sz	J	Wp	^{1}X	W	Tolerance	VIF	VIF
Sz	1	0.622	0.678	0.617	-0.945	0.024	42.376	-
J		1	-0.568	0.639	-0.605	0.287	3.489	1.992
Wp			1	-0.846	-0.643	0.010	97.175	-
${}^{1}\overline{X}$				1	-0.743	0.041	24.607	1.992
W					1	0.011	89.146	-

Table 4. Correlation between the molecular descriptors (model 2)

Pearso	n correla	tions		Collineari	Corrected model		
	WW	J	$^{1}\mathrm{X}$	W	Tolerance	VIF	VIF
WW	1	0.017	-0.836	-0.983	0.027	148.05	-
J		1	-0.209	-0.032	0.531	1.883	1.869
${}^{1}X$			1	-0.914	0.003	37.321	1.869
W				1	0.007	293.564	-

We have computed Q^2 (Eq.5) by 50% of data, randomly, that are positive and less than one.

$$Q^{2} = 1 - \frac{\sum (Y_{i} - \widehat{Y}_{i|i})^{2}}{\sum (Y_{i} - \overline{Y})^{2}} Q^{2}$$

$$\leq 1 \qquad (5)$$

Where the notation i i indicates that the response is predicted by a model estimated when the i-th sample was left out from the data set.

Regular residuals

The residual is the difference between the observed value of the dependent variable (y) and the predicted (calculated) value (\hat{y}). Comparison between predicted (calculated) and observed values of C_v and E_{th} of respect amino acids which is shown in Tables 5, 6. Figures 1, 2 shows the linear correlation between the observed and the predicted heat capacity and the obtained thermal energy values using equations 3 and 4 respectively.

Figure 1. Comparison between the predicted and observed values of the heat capacity (model 1) by MLR method

Figure 2. Comparison between the predicted and observed values of the thermal energy (model 2) by MLR method

Table 5. Comparison between predicted (calculated) and observed values of the heat capacity (C_V) of respect amino acid derivatives

Come No	Observed	Predicted	Destates	Come No	Observed	Predicted	Desideral
Comp.no	Cv(J/mol.K)	Cv(J/mol.K)	Kesiduai	Comp.No	Cv(J/mol.K)	Cv(J/mol.K)	Kesiduai
1	97.66	99.74	-2.09	41	207.38	208.32	-0.95
2	137.64	146.37	-8.73	42	151.62	143.52	8.10
3	141.45	143.65	-2.20	43	133.42	130.44	2.98
4	108.28	130.98	-22.70	44	194.09	198.87	-4.78

5	135.52	132.06	3.45	45	265.98	261.05	4.93
6	181.91	174.75	7.16	46	219.11	202.31	16.80
7	157.78	143.52	14.26	47	134.32	130.44	3.87
8	168.88	169.55	-0.67	48	149.78	148.47	1.32
9	151.18	169.55	-18.37	49	197.18	192.03	5.15
10	148.54	149.95	-1.41	50	152.84	143.52	9.32
11	127.92	143.65	-15.73	51	162.41	147.35	15.06
12	195.91	212.88	-16.97	52	126.98	126.10	0.89
13	163.76	181.34	-17.59	53	93.04	96.90	-3.86
14	117.33	116.67	0.66	54	220.04	201.02	19.02
15	136.38	157.70	-21.32	55	104.65	116.67	-12.03
16	155.85	148.47	7.38	56	115.72	116.67	-0.95
17	198.99	180.26	18.74	57	251.02	261.49	-10.47
18	155.59	162.02	-6.43	58	200.41	198.57	1.84
19	144.16	151.69	-7.53	59	234.27	235.17	-0.90
20	155.41	166.62	-11.21	60	135.95	130.44	5.50
21	122.19	135.21	-13.02	61	173.91	185.72	-11.81
22	189.84	174.75	15.09	62	158.63	149.95	8.68
23	94.14	96.90	-2.76	3	113.01	111.03	1.98
24	177.26	177.03	0.23	64	150.47	138.75	11.72
25	185.91	167.04	18.88	65	149.22	144.10	5.12
26	190.97	180.26	10.71	66	256.88	261.64	-4.77
27	109.77	116.67	-6.90	67	122.5	124.97	-2.47
28	132.79	130.44	2.35	68	176.81	174.75	2.06
29	114.04	116.67	-2.63	69	157.13	153.61	3.52
30	201.26	190.50	10.76	70	228.87	201.72	27.15
31	174.97	174.75	0.21	71	182.65	188.58	-5.93
32	204.74	206.65	-1.90	72	219.73	201.26	18.47
33	183.64	170.77	12.87	73	161.08	167.04	-5.95
34	148.91	148.47	0.44	74	157.73	172.36	-14.63
35	181.01	175.75	5.26	75	210.93	230.77	-19.84
36	129.42	130.44	-1.03	76	234.41	250.54	-16.13
37	127.11	124.67	2.45	77	114.52	116.67	-2.16
38	109.11	116.67	-7.56	78	125.39	126.60	-1.20
39	175.49	160.69	14.80	79	154.05	147.35	6.70
40	206.58	210.60	-4.02	80	147.99	162.29	-14.30

Com	Observed	Predicted	Destinal	Com	Observed	Predicted	Desideral
p.No	E _{th} (J/mol.k)	E _{th} (J/mol)	Residual	p.No	$E_{th}(J/mol.k)$	Eth(J/mol)	Residual
1	320.65	334.35	-13.70	41	321.37	391.55	-70.17
2	238.01	272.32	-34.31	42	489.12	437.34	51.78
3	487.14	492.36	-5.21	43	665.2	654.43	10.77
4	567.81	482.71	85.10	44	906.1	856.65	49.45
5	419.01	445.03	-26.02	45	746.35	666.04	80.30
6	579.05	574.89	4.16	46	450.27	437.34	12.93
7	495.66	480.51	15.15	47	504.48	500.25	4.23
8	494.52	567.72	-73.21	48	663.89	633.40	30.49
9	481.37	492.28	-10.91	49	542.36	480.51	61.85
10	383.17	482.71	-99.54	50	487.71	498.95	-11.24
11	654.54	698.68	-44.14	51	377.68	409.24	-31.56
12	564.66	597.91	-33.24	52	511.62	413.40	98.22
13	323.92	391.55	-67.63	53	321.4	322.06	-0.66
14	654.42	517.98	136.44	54	608.03	663.87	-55.83
15	571.39	500.25	71.14	55	338.66	391.55	-52.89
16	618.58	602.34	16.24	56	322.82	391.55	-68.72
17	459.71	543.63	-83.91	57	917.04	833.89	83.16
18	481.34	498.86	-17.51	58	610.71	651.35	-40.63
19	571.85	562.05	9.80	59	806.91	771.20	35.71
20	422.69	453.12	-30.43	60	408.29	437.34	-29.05
21	405.11	391.55	13.56	61	654.93	624.28	30.65
22	614.51	574.89	39.62	62	468.35	492.28	-23.93
23	323.09	322.06	1.03	3	406.26	369.17	37.09
24	542.44	583.22	-40.78	64	573.61	461.42	112.19
25	630.62	602.34	28.28	65	594.6	476.97	117.63
26	298.8	391.55	-92.74	66	604.76	744.70	-139.95
27	458.96	437.34	21.61	67	841.62	859.73	-18.11
28	375.32	391.55	-16.23	68	384.46	415.63	-31.17
29	593.47	629.25	-35.78	69	542.5	574.89	-32.39
30	543.9	574.89	-30.99	70	570.44	519.99	50.45

 Table 6. Comparison between predicted and observed values of the thermal energy (E_{th}) of respect amino acid derivatives

The use of topological indices to predict thermodynamic properties of amino...

31	641.07	697.27	-56.20	71	667.36	618.70	48.66
32	643.41	572.33	71.08	72	745.55	662.10	83.45
33	505.02	500.25	4.77	73	498.93	529.74	-30.81
34	422.71	437.34	-14.63	74	528.5	550.58	-22.08
35	442.32	409.24	33.09	75	586.96	563.69	23.27
36	541.6	574.89	-33.29	76	719.77	759.38	-39.62
37	339.48	391.55	-52.07	77	699.81	822.03	-122.22
38	705.55	690.57	14.98	78	366.96	391.55	-24.58
39	704.38	682.23	22.15	79	468.39	416.25	52.13
40	573.05	480.51	92.54	80	501.88	498.95	2.93

Conclusion

OSPR At the present study. mathematical models for the prediction of the heat capacity (C_v) and thermal (E_{th}) of 80 amino energy acids derivatives using MLR method based on topological descriptors calculated from molecular structure alone have been developed. MLR model is proved to be a useful tool in the prediction of C_v and E_{th} . Cross-validation as the evaluation technique has been designed to evaluate the quality and predictive ability of the MLR model. The obtained results showed that the best model for predicting the heat capacity and thermal energy contains two parameters having to be optimized: the Randic (^{1}X) and Balaban (J) indices.

Acknowledgements

The authors would like to thank Islamic Azad University of Arak for their support on this work.

References

[1] H.D. Jakube, H. Jeschkeit, Eine Einführung, Akademie-Verlag, Berlin., **1982**, 26, 838-839.

[2] N. Ahmadinejad, M. Talebi Tari, J. *Chem. Method.*, **2019**, *3*, 55-66.

[3] M. Nabati , M. alsadat Kermanian,H. Mohammadnejad-Mehrabani, H.Rahbar Kafshboran, M. Mehmannavaz,

S. Sarshar, J. Chem. Method., 2018, 2, 128-140.

[4] A.T. Balaban, T.S. Balaban, J. *Math. Chem.*, **1991**, *8*, 383-397.

[5] P.J. Hansen, P.C. Jurs, J. Chem. edu., **1988**, 65, 574-580.

[6] G. Rucker, C. Rucker, J. Chem. Inf. Comput. Sci., **1999**, 39, 788-802.

[7] M. Shahpar, S. Esmaeilpoor, A. J. Green Chem., **2017**, *1*, 116-129.

[8] Y. Boukarai, F. Khalil, M. Bouachrine, *J. Chem. Method.*, **2017**, *1*, 173-193.

[9] M.P. Gonzales, A.M. Helguera, M.A. Cabrera, *Bioorg. Med. Chem.*, 2005, *13*, 1775-1781.

[10] M. Randic', S.C. Basak, SAR. QSAR. Environ. Res., 2000, 11, 1-23.

[11] O. Ivanciuc, T. Ivanciuc, D. Cabrol-Bass, A.T. Balaban, *J. Chem. Inf. Comput. Sci.*, **2000**, *40*, 631-643.

[12] M. Nabati, J. Chem. Method., **2017**, *1*, 121-135.

[13] A.R. Katritzky, V.S. Lobanov, M. Karelson, *Chem. Soc. Rev.*, **1995**, *24*, 279-287.

[14] A. R.Katritzky, U. Maran, V.S. Lobanov, M. Karelson, J. Chem. Inf. Comput. Sci., 2000, 40, 1-18.

[15] Y.P. Du, Y.Z. Liang, B.Y. Li, C.J. Xu, *J. Chem. Inf. Comput. Sci.*, **2002**, *42*, 1128-1138.

[16] Z. Slanina, F. Uhlik, S.L. Lee, E. Osawa. MATCH Commun. Math. Comput. Chem., 2001, 44, 335-348. [17] Yi. Gao, M. Farahani, W. Nazeer, J. Chem. Method., 2018, 2, 39-46. [18] A.T. Balaban, J. Chem. Inf. Comput. Sci., 1995, 35, 339-350. [19] M. Randić, J. Math. Chem., 1991, 7, 155-168. [20] H. Wiener, J. American. Chem. Soc., 1947, 69, 17-20. [21] A.T. Balaban, J. Chem. Inf. Comput. Sci., 1985, 25, 334-343. [22] A.R. Nizami, T. Farman, J. Appl. Comput. Math., 2018, 7, 1-5. [23] F. Shafiei, Iranian J. Math. Chem., 2015, 6, 15-28. [24] D. Bonchev, J. Chem. Inf. Comput. Sci., 2000, 40, 934-941. [25] S. Liu, H. Liu, Z. Xia, C. Cao, Z. Li, J. Chem. Inf. Comput. Sci., 1999, 39, 951-957. [26] O. Ivanciuc, T. Ivanciuc, D.J. Klein, W.A. Seitz, A.T. Balaban, J. Chem. Inf. Comput. Sci., 2001, 41, 536-549. [27] A. Alaghebandi, F. Shafiei, Iranian J. Math. Chem., 2016, 7, 235-251. [28] Elizabeth R. Collantes, and William J. Dunn III, J. Med. Chem., 1995, 38, 2705-2713. [29] R. Beigzadeh, J. Chem. Method., **2019**, *3*, 67-82.

[30] Li. Yang, Mao. Shu, Kaiwang. Ma, Hu. Mei, Yongjun. Jiang, Zhiliang. Li, Amino Acids., 2010, 38, 805-816. [31] S. Sahoo, M. Kuanar, S. Patel, B.K. Mishra, Indian. J. chem., 2014, 53A, 1324-1331. [32] A. Kidera, Y. konishi, M. Oka, T. Ooi, H. Scheraga, J. Protein Chem., **1985**, *4*, 23–55. [33] Web search engine developed by ChemAxon; software available at http:// WWW. Chemicalize. Org. [34] M. Randić, Acta. Chim. Slov.. 2002, 49, 483-496. [35] B. Zhou, I. Gutman, Chem. Phys. Lett., 2004, 394, 93-95. [36] D.J. Klein, W. Yan, Y.N. Yeh, INT. J. QUANTUM. CHEM., 2006, 106, 1756-1761. [37] M. Liu, B. Liu, MATCH Commun. Math. Comput. Chem., 2011, 66, 293-304. [38] M. Randić, X. Guo, T. Oxley, H. Krishnapriyan, J. Chem. Inf. Comput. Sci., 1994, 34, 361-367. [39] A.T. Balaban, Chem. Phys. Lett., 1982, 89, 399-404. [40] K.C. Das, B. Zhou, N. Trinajstić, J. Math. Chem., 2009, 46, 1369-1376. [41] I. Gutman, S. Klavžar, J.Chem. Inf. Comput. Sci., 1995, 35, 1011-1014. [42] P.V. Khadikar, N.V. Deshpande, P.P. Kale, A. Dobrynin, I. Gutman, G. Dömötör, J. Chem. Inf. Comput. Sci., **1995**, *35*, 547-550.

How to cite this manuscript: Afsaneh Safari, Fatemeh Shafiei. "The use of topological indices to predict thermodynamic properties of amino acid derivatives". *Eurasian Chemical Communications*, 2019, 276-289.