Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Department of Chemistry, Faculty of science, Arak Branch, Islamic Azad University, Arak, Iran

2 Department of Chemistry, Faculty of science, East Tehran branch, Islamic Azad university, Qiam Dasht, Tehran, Iran

Abstract

This research aimed at exploring the stabilities of conformers of 1, 4-dioxane-2, 3-bis (pyridin-1-ium) and 1, 4-dioxane-2, 5-bis(pyridin-1-ium) molecules at the B3LYP/6-311+G (d,p) theory level. To this goal, estimations of the total energies and dipole moments of the axial and equatorial conformations were first done for the mentioned molecules. C-N and C-O bond distances were calculated and these variations were explained with the negative hyperconjugative anomeric effects.  The negative hyperconjugative anomeric effect on the axial conformer was illustrated by NBO analysis and the interactions responsible for the effect were explored. Also, QTAIM study was used for illustration of the C-N and C-C bonds in the studied systems.

Graphical Abstract

NBO and QTAIM investigations of the conformers of 1, 4-dioxane-2, 3-bis(pyridin-1-ium) and 1, 4-dioxane-2, 5-bis(pyridin-1-ium) molecules

Keywords

[1] T.K.G. Mohr: Environmental Investigation and Remediation: 1,4-Dioxane and Other Solvent Stabilizers; CRC Press, Boca Roca, FL, 2010.
[2] USEPA: Integrated Risk Information System (IRIS) on 1,4-Dioxane. National Center for Environmental Assessment, Office of Research and Development: Washington DC, 2013.
[3] K. Niwa, N. Tanaka, S.-Y. Kim, M. Kojoma,Y. Kashiwada, Organic Letters, 2017, 20, 5977-5980.
[4] J.R. Jasmann, P.B. Gedalanga,T. Borch, S. Mahendra, J. Blotevogel, Environmental Science & Technology, 2017, 51, 12619-12629.
[5] Y. He, J. Mathieu,Y. Yang, P. Yu, M. L.B. da Silva, P.J.J. Alvarez, Environmental Science & Technology Letters, 2017, 4, 494-499.
[6] V.K. Sharma, S. Malik, S. Solanki, Journal of Chemical & Engineering Data, 2017, 62, 623-632.
[7] W.F. Bailey, K.M. Lambert: The Importance of Electrostatic Interactions on the Conformational Behavior of Substituted 1,3-Dioxanes: The Case of 5-Phenyl-1,3-dioxane. In Stereochemistry and Global Connectivity: The Legacy of Ernest L. Eliel Volume 2; American Chemical Society, 2017; Vol. 1258; pp 19-26.
[8] H. Barndõk, D. Hermosilla, C. Negro, Á. Blanco, ACS Sustainable Chemistry & Engineering, 2017, 6, 5888-5894.
[9] H. Benabida, F.B. Belaribi, Journal of Chemical & Engineering Data, 2017, 63, 2697-2707.
[10] W. Dai, S.J. Geib, D. P. Curran, The Journal of Organic Chemistry, 2017, 83, 8775-8779.
[11] D. Deng, F. Li, M. Li, Environmental Science & Technology Letters, 2017, 5, 86-91.
[12] C. Altona, C. Romers, Rev. Trav. Chim., 1963, 82, 1089-1098.
[13] C. Altona, C. Knobler, C. Romers, Acta Cryst, 1963, 16, 1217-1225.
[14] C. Altona: Molecular structure and conformation of some Halogeno-1, 4-dioxanes; Diss. Druco, 1964.
[15] D.A. Ramsay, Trans. Faraday Soc., 1948, 44, 289-295.
[16] J.C. Decius, W.C. Steele, R.G. Snyder, J. Chem. Phys., 1951, 19, 806-806.
[17] Y.N. Levchuk, N.V.K.I. Krasavtsev, Journal of Applied Spectroscopy, 1972, 17, 1055–1058.
[18] A.J. Kirby: TheAnomeric Effect andRelatedStereoelectronic  Efects at Oxygen; Springer-Verlag: Berlin, 1983.
[19] P. Hosseini, M.R. Sameti, Chemical Methodologies, 2019, 3, 607-625.
[20] L. Shiri,D. Sheikh, S. Janinia, M. Sheikhi, Chemical Methodologies, 2019, 3, 392-407.
[21] N. Ahmadinejad, M.T. Trai, Chemical Methodologies, 2019, 3, 55-66.
[22] M. Nabati, Chemical Methodologies, 2017, 1, 121-135.
[23] A. Ramazani, S.M., H. Yahyaei, Chemical Methodologies, 2017, 1, 28-48.
[24] E. Gomaa, M. Berghout, M. Moustafa, F.E. Taweel, H. Farid, Progress in Chemical and Biochemical Research, 2018, 1, 19-28.
[25] A. Mirzaie, Journal of Medicinal and Chemical Sciences, 2018, 1, 31-32.
[26] B. Mosallanejad, Chemical Methodologies, 2019, 3, 261-275.
[27] W. Saidi, T. Abram, L. Bejjit, M. Bouachrine, Chemical Methodologies, 2018, 2, 247-259.
[28] M. Sayadian, H. Sadegh, Chemical Methodologies, 2018, 2, 239-246.
[29] C. Wang, F. Ying, W. Wu,Y. Mo, J. Org. Chem. , 2014, 79, 1571−1581.
[30] H. Hřebabecký, M. Dračínský,E. Procházková, M. Šála, R. Mackman, R. Nencka, The Journal of Organic Chemistry, 2017, 82, 11337-1134.
[31]  L. Kerins,S. Byrne, A. Gabba, P.V. Murphy, The Journal of Organic Chemistry,  2018, 83, 7714-7729.
[32] D. Yokogawa, U. Schnupf, S. Irle, The Journal of Physical Chemistry B, 2018, 122, 290-296.
[33] P.M. Antonik, A.N. Volkov, U.N. Broder, D.L. ReNico, A.J.V. Nuland, P. B. Crowley, Biochemistry  2016, 55, 1195-1203
[34] T. Gaudin, P. Rotureau, I. Pezron,G. Fayet, Computational and Theoretical Chemistry, 2017, 1101, 20-29.
[35] S. Ahmadi, V. Manickam Achari, Z. Hussain, R. Hashim, Computational and Theoretical Chemistry, 2017, 1108, 93-102.
[36] F. M. P. d. Rezende, M. P. Freitas, T.C. Ramalho, Computational and Theoretical Chemistry, 2019, 1152, 28-31.
[37] F. Momany, U. Schnupf, Computational and Theoretical Chemistry, 2014, 1029,, 57-67.
[38] M. Nasrolahi, R. Ghiasi, F. Shafiee, J. Struc. Chem, 2019, 60, 746-754.
[39] R.O.P.G, M. Montejo, J.J.L. González, ChemPhysChem, 2016, 16, 530-540.
[40] D. Leitz, M.C. Bayer, Y. Morgenstern, F. Zischka, A. J. Kornath, Chemistry – A European Journal, 2018, 24, 15693-15693.
[41] M.E. Buschbeck‐Alvarado, G. Hernández‐Fernández, J. Hernández‐Trujillo, F. Cortés‐Guzmán, G. Cuevas, Journal of Physical Organic Chemistry, 2018, 31, e3793.
[42] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox: Gaussian 09. Revision A.02 ed.; Gaussian, Inc.: Wallingford CT, 2009.
[43] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys., 1980, 72, 650-654.
[44] A.D. McLean, G.S. Chandler, J. Chem. Phys., 1980, 72, 5639-5648.
[45] L.A. Curtiss, M.P. McGrath, J.-P. Blandeau, N.E. Davis, R.C. Binning, J.L. Radom, J. Chem. Phys., 1995, 103, 6104-6113.
[46] A.D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098–3100.
[47] A.D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
[48] C. Lee, W. Yang, R. Parr, Phys. Rev. B: Condens. Matter., 1988, 37, 785–789.
[49] A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. , 1988, 88, 899-926.
[50] T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580-592.
[51] R.G. Parr, P.K. Chattaraj, J. Am. Chem. Soc. , 1991, 113, 1854-1855.
[52] R.G. Pearson, J. Chem. Educ., 1987, 64, 561-567.
[53] R.G. Pearson, Acc. Chem. Res., 1993, 26, 250-255.
[54] R.G. Pearson, J. Chem. Educ., 1999, 76, 267-275.
[55] P.W. Ayers, R.G. Parr, J. Am. Chem. Soc., 2000, 122, 2010-2018.
[56] E. Chamorro, P.K. Chattaraj, P. Fuentealba, J. Phys. Chem. A 2003, 107, 7068-7072.
[57] R. Parthasarathi, M. Elango, V. Subramanian, P.K. Chattaraj, Theor. Chem. Acc., 2005, 113, 257-266.
[58] K.B. Wiberg, M.A. Murcko, J. Phys. Chem., 1987, 91, 3616-3620.
[59] I. Cukrowski, J.H. d. Lange, M. Mitoraj, J. Phys. Chem. A, 2014, 118, 623-637.